Power Control By Geometric Programming

In wireless cellular or ad hoc networks where Quality of Service (QoS) is interference-limited, a variety of power control problems can be formulated as nonlinear optimization with a system-wide objective, e.g., maximizing the total system throughput or the worst user throughput, subject to QoS cons...

Full description

Saved in:
Bibliographic Details
Published inIEEE transactions on wireless communications Vol. 6; no. 7; pp. 2640 - 2651
Main Authors Chiang, M., Chee Wei Tan, Palomar, D.P., O'Neill, D., Julian, D.
Format Journal Article
LanguageEnglish
Published Piscataway, NJ IEEE 01.07.2007
Institute of Electrical and Electronics Engineers
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text
ISSN1536-1276
1558-2248
DOI10.1109/TWC.2007.05960

Cover

More Information
Summary:In wireless cellular or ad hoc networks where Quality of Service (QoS) is interference-limited, a variety of power control problems can be formulated as nonlinear optimization with a system-wide objective, e.g., maximizing the total system throughput or the worst user throughput, subject to QoS constraints from individual users, e.g., on data rate, delay, and outage probability. We show that in the high Signal-to- interference Ratios (SIR) regime, these nonlinear and apparently difficult, nonconvex optimization problems can be transformed into convex optimization problems in the form of geometric programming; hence they can be very efficiently solved for global optimality even with a large number of users. In the medium to low SIR regime, some of these constrained nonlinear optimization of power control cannot be turned into tractable convex formulations, but a heuristic can be used to compute in most cases the optimal solution by solving a series of geometric programs through the approach of successive convex approximation. While efficient and robust algorithms have been extensively studied for centralized solutions of geometric programs, distributed algorithms have not been explored before. We present a systematic method of distributed algorithms for power control that is geometric-programming-based. These techniques for power control, together with their implications to admission control and pricing in wireless networks, are illustrated through several numerical examples.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ObjectType-Article-2
ObjectType-Feature-1
content type line 23
ISSN:1536-1276
1558-2248
DOI:10.1109/TWC.2007.05960