PARP1 Inhibition Radiosensitizes Models of Inflammatory Breast Cancer to Ionizing Radiation
Sustained locoregional control of disease is a significant issue in patients with inflammatory breast cancer (IBC), with local control rates of 80% or less at 5 years. Given the unsatisfactory outcomes for these patients, there is a clear need for intensification of local therapy, including radiatio...
Saved in:
Published in | Molecular cancer therapeutics Vol. 18; no. 11; pp. 2063 - 2073 |
---|---|
Main Authors | , , , , , , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
01.11.2019
|
Online Access | Get full text |
ISSN | 1535-7163 1538-8514 1538-8514 |
DOI | 10.1158/1535-7163.MCT-19-0520 |
Cover
Summary: | Sustained locoregional control of disease is a significant issue in patients with inflammatory breast cancer (IBC), with local control rates of 80% or less at 5 years. Given the unsatisfactory outcomes for these patients, there is a clear need for intensification of local therapy, including radiation. Inhibition of the DNA repair protein PARP1 has had little efficacy as a single agent in breast cancer outside of studies restricted to patients with BRCA mutations; however, PARP1 inhibition (PARPi) may lead to the radiosensitization of aggressive tumor types. Thus, this study investigates inhibition of PARP1 as a novel and promising radiosensitization strategy in IBC. In multiple existing IBC models (SUM-149, SUM-190, MDA-IBC-3), PARPi (AZD2281-olaparib and ABT-888-veliparib) had limited single-agent efficacy (IC50 > 10 μmol/L) in proliferation assays. Despite limited single-agent efficacy, submicromolar concentrations of AZD2281 in combination with RT led to significant radiosensitization (rER 1.12–1.76). This effect was partially dependent on BRCA1 mutational status. Radiosensitization was due, at least in part, to delayed resolution of double strand DNA breaks as measured by multiple assays. Using a SUM-190 xenograft model in vivo, the combination of PARPi and RT significantly delays tumor doubling and tripling times compared with PARPi or RT alone with limited toxicity. This study demonstrates that PARPi improves the effectiveness of radiotherapy in IBC models and provides the preclinical rationale for the opening phase II randomized trial of RT ± PARPi in women with IBC (SWOG 1706, NCT03598257). |
---|---|
Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 Authors’ Contributions these authors contributed equally as shared first authors. Administrative, technical, or material support: A. Michmerhuizen, A. Pesch, L. Pierce, R. Jagsi, C. Speers Conception and design: A. Michmerhuizen, A. Pesch, L. Moubadder, R. Jagsi, C. Speers Development and methodology: A. Michmerhuizen, A. Pesch, L. Moubadder, C. Speers Acquisition of data: A. Michmerhuizen, A. Pesch, L. Moubadder, B. Chandler, K. Wilder-Romans, M. Cameron, E. Olsen, D. Thomas, A. Zhang, N. Hirsh, C. Ritter, M. Liu Analysis and interpretation of data: A. Michmerhuizen, A. Pesch, L. Moubadder, B. Chandler, K. Wilder-Romans, D. Thomas, M. Liu, S. Nyati, R. Jagsi, C. Speers Writing, review and/or revision of manuscript: A. Michmerhuizen, A. Pesch, L. Moubadder, B. Chandler, K. Wilder-Romans, M. Cameron, E. Olsen, D. Thomas, A. Zhang, N. Hirsh, C. Ritter, M. Liu, S. Nyati, L. Pierce, R. Jagsi, C. Speers Study Supervision: R. Jagsi, C. Speers |
ISSN: | 1535-7163 1538-8514 1538-8514 |
DOI: | 10.1158/1535-7163.MCT-19-0520 |