Local Tetra Patterns: A New Feature Descriptor for Content-Based Image Retrieval

In this paper, we propose a novel image indexing and retrieval algorithm using local tetra patterns (LTrPs) for content-based image retrieval (CBIR). The standard local binary pattern (LBP) and local ternary pattern (LTP) encode the relationship between the referenced pixel and its surrounding neigh...

Full description

Saved in:
Bibliographic Details
Published inIEEE transactions on image processing Vol. 21; no. 5; pp. 2874 - 2886
Main Authors Murala, S., Maheshwari, R. P., Balasubramanian, R.
Format Journal Article
LanguageEnglish
Published New York, NY IEEE 01.05.2012
Institute of Electrical and Electronics Engineers
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text
ISSN1057-7149
1941-0042
1941-0042
DOI10.1109/TIP.2012.2188809

Cover

More Information
Summary:In this paper, we propose a novel image indexing and retrieval algorithm using local tetra patterns (LTrPs) for content-based image retrieval (CBIR). The standard local binary pattern (LBP) and local ternary pattern (LTP) encode the relationship between the referenced pixel and its surrounding neighbors by computing gray-level difference. The proposed method encodes the relationship between the referenced pixel and its neighbors, based on the directions that are calculated using the first-order derivatives in vertical and horizontal directions. In addition, we propose a generic strategy to compute nth-order LTrP using (n - 1)th-order horizontal and vertical derivatives for efficient CBIR and analyze the effectiveness of our proposed algorithm by combining it with the Gabor transform. The performance of the proposed method is compared with the LBP, the local derivative patterns, and the LTP based on the results obtained using benchmark image databases viz., Corel 1000 database (DB1), Brodatz texture database (DB2), and MIT VisTex database (DB3). Performance analysis shows that the proposed method improves the retrieval result from 70.34%/44.9% to 75.9%/48.7% in terms of average precision/average recall on database DB1, and from 79.97% to 85.30% and 82.23% to 90.02% in terms of average retrieval rate on databases DB2 and DB3, respectively, as compared with the standard LBP.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ObjectType-Article-2
ObjectType-Feature-1
ISSN:1057-7149
1941-0042
1941-0042
DOI:10.1109/TIP.2012.2188809