Global satellite water classification data products over oceanic, coastal, and inland waters

Satellites have generated extensive data of remote sensing reflectance spectra (Rrs(λ)) covering diverse water classes or types across global waters. Spectral classification of satellite Rrs(λ) data allows for the distinguishing and grouping of waters with characteristic bio-optical/biogeochemical f...

Full description

Saved in:
Bibliographic Details
Published inRemote sensing of environment Vol. 282; p. 113233
Main Authors Wei, Jianwei, Wang, Menghua, Mikelsons, Karlis, Jiang, Lide, Kratzer, Susanne, Lee, Zhongping, Moore, Tim, Sosik, Heidi M., Van der Zande, Dimitry
Format Journal Article
LanguageEnglish
Published Elsevier Inc 01.12.2022
Subjects
Online AccessGet full text
ISSN0034-4257
1879-0704
1879-0704
DOI10.1016/j.rse.2022.113233

Cover

More Information
Summary:Satellites have generated extensive data of remote sensing reflectance spectra (Rrs(λ)) covering diverse water classes or types across global waters. Spectral classification of satellite Rrs(λ) data allows for the distinguishing and grouping of waters with characteristic bio-optical/biogeochemical features that may influence the productivity of a given water body. This study reports new satellite water class products (Level-2 and Level-3) from the Visible Infrared Imaging Radiometer Suite (VIIRS). We developed and implemented a hyperspectral scheme that accounts for the Rrs(λ) spectral shapes and globally resolves oceanic, coastal, and inland waters into 23 water classes. We characterized the light absorption and scattering coefficients, chlorophyll-a concentration, diffuse attenuation coefficient, and suspended particulate matter for individual water classes. It is shown that the water classes are separable by their distinct bio-optical and biogeochemical properties. Furthermore, validation result suggests that the VIIRS water class products are accurate globally. Finally, we examined the spatial and temporal variability of the water classes in case studies for a demonstration of applications. The water class data in open oceans reveal that the subtropical ocean gyres have experienced dramatic expansion over the last decade. In addition, the water class data appear to be a valuable (and qualitative) indicator for water quality in coastal and inland waters with compelling evidence. We stress that this new satellite product is an excellent addition to the aquatic science database, despite the need for continuous improvement toward perfection. •First mission-long satellite water class products are created from VIIRS satellite.•A reflectance shape-based algorithm was used to resolve the global water classes.•The water classes feature distinct bio-optical and biogeochemical qualities.•Matchup analysis shows the water class products are reliable globally.•Great potentials are shown for aquatic ecology and water quality applications.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:0034-4257
1879-0704
1879-0704
DOI:10.1016/j.rse.2022.113233