Multi-Label Image Categorization With Sparse Factor Representation

The goal of multilabel classification is to reveal the underlying label correlations to boost the accuracy of classification tasks. Most of the existing multilabel classifiers attempt to exhaustively explore dependency between correlated labels. It increases the risk of involving unnecessary label d...

Full description

Saved in:
Bibliographic Details
Published inIEEE transactions on image processing Vol. 23; no. 3; pp. 1028 - 1037
Main Authors Fuming Sun, Jinhui Tang, Haojie Li, Guo-Jun Qi, Huang, Thomas S.
Format Journal Article
LanguageEnglish
Published New York, NY IEEE 01.03.2014
Institute of Electrical and Electronics Engineers
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text
ISSN1057-7149
1941-0042
1941-0042
DOI10.1109/TIP.2014.2298978

Cover

More Information
Summary:The goal of multilabel classification is to reveal the underlying label correlations to boost the accuracy of classification tasks. Most of the existing multilabel classifiers attempt to exhaustively explore dependency between correlated labels. It increases the risk of involving unnecessary label dependencies, which are detrimental to classification performance. Actually, not all the label correlations are indispensable to multilabel model. Negligible or fragile label correlations cannot be generalized well to the testing data, especially if there exists label correlation discrepancy between training and testing sets. To minimize such negative effect in the multilabel model, we propose to learn a sparse structure of label dependency. The underlying philosophy is that as long as the multilabel dependency cannot be well explained, the principle of parsimony should be applied to the modeling process of the label correlations. The obtained sparse label dependency structure discards the outlying correlations between labels, which makes the learned model more generalizable to future samples. Experiments on real world data sets show the competitive results compared with existing algorithms.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ObjectType-Article-2
ObjectType-Feature-1
ISSN:1057-7149
1941-0042
1941-0042
DOI:10.1109/TIP.2014.2298978