A Diffusion‐‐Reaction Competition Mechanism to Tailor Lithium Deposition for Lithium‐Metal Batteries

Lithium metal is recognized as one of the most promising anode materials owing to its ultrahigh theoretical specific capacity and low electrochemical potential. Nonetheless, dendritic Li growth has dramatically hindered the practical applications of Li metal anodes. Realizing spherical Li deposition...

Full description

Saved in:
Bibliographic Details
Published inAngewandte Chemie International Edition Vol. 59; no. 20; pp. 7743 - 7747
Main Authors Chen, Xiao‐Ru, Yao, Yu‐Xing, Yan, Chong, Zhang, Rui, Cheng, Xin‐Bing, Zhang, Qiang
Format Journal Article
LanguageEnglish
Published Germany Wiley Subscription Services, Inc 11.05.2020
EditionInternational ed. in English
Subjects
Online AccessGet full text
ISSN1433-7851
1521-3773
1521-3773
DOI10.1002/anie.202000375

Cover

More Information
Summary:Lithium metal is recognized as one of the most promising anode materials owing to its ultrahigh theoretical specific capacity and low electrochemical potential. Nonetheless, dendritic Li growth has dramatically hindered the practical applications of Li metal anodes. Realizing spherical Li deposition is an effective approach to avoid Li dendrite growth, but the mechanism of spherical deposition is unknown. Herein, a diffusion‐reaction competition mechanism is proposed to reveal the rationale of different Li deposition morphologies. By controlling the rate‐determining step (diffusion or reaction) of Li deposition, various Li deposition scenarios are realized, in which the diffusion‐controlled process tends to lead to dendritic Li deposition while the reaction‐controlled process leads to spherical Li deposition. This study sheds fresh light on the dendrite‐free Li metal anode and guides to achieve safe batteries to benefit future wireless and fossil‐fuel‐free world. Sphere factor: A diffusion–reaction competition mechanism reveals the principle of spherical Li deposition. By controlling the rate‐determining step of Li deposition, different Li deposition scenarios are revealed, in which the diffusion‐controlled process tends to give dendritic Li deposition while the reaction‐controlled process leads to spherical Li deposition.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ISSN:1433-7851
1521-3773
1521-3773
DOI:10.1002/anie.202000375