Unveiling the Intrinsic Catalytic Activities of Single‐Gold‐Nanoparticle‐Based Enzyme Mimetics

Gold nanoparticles (AuNPs) have been demonstrated to serve as effective nanomaterial‐based enzyme mimetics (nanozymes) for a number of enzymatic reactions under mild conditions. The intrinsic glucose oxidase and peroxidase activities of single AuNPs and Ag–Au nanohybrids, respectively, were investig...

Full description

Saved in:
Bibliographic Details
Published inAngewandte Chemie International Edition Vol. 58; no. 19; pp. 6327 - 6332
Main Authors Hafez, Mahmoud Elsayed, Ma, Hui, Ma, Wei, Long, Yi‐Tao
Format Journal Article
LanguageEnglish
Published Germany Wiley Subscription Services, Inc 06.05.2019
EditionInternational ed. in English
Subjects
Online AccessGet full text
ISSN1433-7851
1521-3773
1521-3773
DOI10.1002/anie.201901384

Cover

More Information
Summary:Gold nanoparticles (AuNPs) have been demonstrated to serve as effective nanomaterial‐based enzyme mimetics (nanozymes) for a number of enzymatic reactions under mild conditions. The intrinsic glucose oxidase and peroxidase activities of single AuNPs and Ag–Au nanohybrids, respectively, were investigated by single NP collision electrochemical measurements. A significantly high turnover number of nanozymes was obtained from individual catalytic events compared with the results from the classical, ensemble‐averaged measurements. The unusual enhancement of catalytic activity of single nanozymes is believed to originate from the high accessible surface area of monodispersed NPs and the high activities of carbon‐supported NPs during single‐particle collision at a carbon ultramicroelectrode. This work introduces a new method for the precise characterization of the intrinsic catalytic activities of nanozymes, giving further insights to the design of high‐efficiency nanomaterial catalysts. Imitation is the sincerest form of flattery: The intrinsic glucose‐oxidase‐ and peroxidase‐mimicking activities of single AuNPs and Ag–Au nanohybrids, respectively, were quantified using stochastic collision electrochemistry, providing new insights for the design of high‐efficiency, nanomaterial‐based catalysts.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ISSN:1433-7851
1521-3773
1521-3773
DOI:10.1002/anie.201901384