Reducing Bacterial Infections and Biofilm Formation Using Nanoparticles and Nanostructured Antibacterial Surfaces
With the rapid spreading of resistance among common bacterial pathogens, bacterial infections, especially antibiotic‐resistant bacterial infections, have drawn much attention worldwide. In light of this, nanoparticles, including metal and metal oxide nanoparticles, liposomes, polymersomes, and solid...
Saved in:
Published in | Advanced healthcare materials Vol. 7; no. 13; pp. e1800103 - n/a |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
Germany
Wiley Subscription Services, Inc
01.07.2018
|
Subjects | |
Online Access | Get full text |
ISSN | 2192-2640 2192-2659 2192-2659 |
DOI | 10.1002/adhm.201800103 |
Cover
Summary: | With the rapid spreading of resistance among common bacterial pathogens, bacterial infections, especially antibiotic‐resistant bacterial infections, have drawn much attention worldwide. In light of this, nanoparticles, including metal and metal oxide nanoparticles, liposomes, polymersomes, and solid lipid nanoparticles, have been increasingly exploited as both efficient antimicrobials themselves or as delivery platforms to enhance the effectiveness of existing antibiotics. In addition to the emergence of widespread antibiotic resistance, of equal concern are implantable device‐associated infections, which result from bacterial adhesion and subsequent biofilm formation at the site of implantation. The ineffectiveness of conventional antibiotics against these biofilms often leads to revision surgery, which is both debilitating to the patient and expensive. Toward this end, micro‐ and nanotopographies, especially those that resemble natural surfaces, and nonfouling chemistries represent a promising combination for long‐term antibacterial activity. Collectively, the use of nanoparticles and nanostructured surfaces to combat bacterial growth and infections is a promising solution to the growing problem of antibiotic resistance and biofilm‐related device infections.
With the rapid spreading of resistance among common bacterial pathogens, antibiotic resistant bacterial infections and biofilm‐related device infections have drawn much attention. In light of this, nanoparticles are increasingly exploited as intrinsic antimicrobials or as delivery platforms to potentiate existing antibiotics, whereas nanostructured surfaces, especially those that resemble natural surfaces, represent a promising solution to address device associated infections. |
---|---|
Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 ObjectType-Review-3 content type line 23 |
ISSN: | 2192-2640 2192-2659 2192-2659 |
DOI: | 10.1002/adhm.201800103 |