An Improved Binary Differential Evolution Algorithm for Feature Selection in Molecular Signatures
The discovery of biomarkers from high‐dimensional data is a very challenging task in cancer diagnoses. On the one hand, biomarker discovery is the so‐called high‐dimensional small‐sample problem. On the other hand, these data are redundant and noisy. In recent years, biomarker discovery from high‐th...
Saved in:
| Published in | Molecular informatics Vol. 37; no. 4; pp. e1700081 - n/a |
|---|---|
| Main Authors | , , , , |
| Format | Journal Article |
| Language | English |
| Published |
Germany
Wiley Subscription Services, Inc
01.04.2018
|
| Subjects | |
| Online Access | Get full text |
| ISSN | 1868-1743 1868-1751 1868-1751 |
| DOI | 10.1002/minf.201700081 |
Cover
| Abstract | The discovery of biomarkers from high‐dimensional data is a very challenging task in cancer diagnoses. On the one hand, biomarker discovery is the so‐called high‐dimensional small‐sample problem. On the other hand, these data are redundant and noisy. In recent years, biomarker discovery from high‐throughput biological data has become an increasingly important emerging topic in the field of bioinformatics. In this study, we propose a binary differential evolution algorithm for feature selection. Firstly, we suggest using a two‐stage approach, where three filter methods including the Fisher score, T‐statistics, and Information gain are used to generate the feature pool for input to differential evolution (DE). Secondly, in order to improve the performance of differential evolution algorithm for feature selection, a new variant of binary DE called BDE is proposed. Three optimization strategies are incorporated into the BDE. The first strategy is the heuristic method in initial stage, the second one is the self‐adaptive parameter control, and the third one is the minimum change value to improve the exploration behaviour thus enhance the diversity. Finally, Support vector machine (SVM) is used as the classifier in 10 fold cross‐validation method. The experimental results of our proposed algorithm on some benchmark datasets demonstrate the effectiveness of our algorithm. In addition, the BDE forged in this study will be of great potential in feature selection problems. |
|---|---|
| AbstractList | The discovery of biomarkers from high‐dimensional data is a very challenging task in cancer diagnoses. On the one hand, biomarker discovery is the so‐called high‐dimensional small‐sample problem. On the other hand, these data are redundant and noisy. In recent years, biomarker discovery from high‐throughput biological data has become an increasingly important emerging topic in the field of bioinformatics. In this study, we propose a binary differential evolution algorithm for feature selection. Firstly, we suggest using a two‐stage approach, where three filter methods including the Fisher score, T‐statistics, and Information gain are used to generate the feature pool for input to differential evolution (DE). Secondly, in order to improve the performance of differential evolution algorithm for feature selection, a new variant of binary DE called BDE is proposed. Three optimization strategies are incorporated into the BDE. The first strategy is the heuristic method in initial stage, the second one is the self‐adaptive parameter control, and the third one is the minimum change value to improve the exploration behaviour thus enhance the diversity. Finally, Support vector machine (SVM) is used as the classifier in 10 fold cross‐validation method. The experimental results of our proposed algorithm on some benchmark datasets demonstrate the effectiveness of our algorithm. In addition, the BDE forged in this study will be of great potential in feature selection problems. The discovery of biomarkers from high-dimensional data is a very challenging task in cancer diagnoses. On the one hand, biomarker discovery is the so-called high-dimensional small-sample problem. On the other hand, these data are redundant and noisy. In recent years, biomarker discovery from high-throughput biological data has become an increasingly important emerging topic in the field of bioinformatics. In this study, we propose a binary differential evolution algorithm for feature selection. Firstly, we suggest using a two-stage approach, where three filter methods including the Fisher score, T-statistics, and Information gain are used to generate the feature pool for input to differential evolution (DE). Secondly, in order to improve the performance of differential evolution algorithm for feature selection, a new variant of binary DE called BDE is proposed. Three optimization strategies are incorporated into the BDE. The first strategy is the heuristic method in initial stage, the second one is the self-adaptive parameter control, and the third one is the minimum change value to improve the exploration behaviour thus enhance the diversity. Finally, Support vector machine (SVM) is used as the classifier in 10 fold cross-validation method. The experimental results of our proposed algorithm on some benchmark datasets demonstrate the effectiveness of our algorithm. In addition, the BDE forged in this study will be of great potential in feature selection problems.The discovery of biomarkers from high-dimensional data is a very challenging task in cancer diagnoses. On the one hand, biomarker discovery is the so-called high-dimensional small-sample problem. On the other hand, these data are redundant and noisy. In recent years, biomarker discovery from high-throughput biological data has become an increasingly important emerging topic in the field of bioinformatics. In this study, we propose a binary differential evolution algorithm for feature selection. Firstly, we suggest using a two-stage approach, where three filter methods including the Fisher score, T-statistics, and Information gain are used to generate the feature pool for input to differential evolution (DE). Secondly, in order to improve the performance of differential evolution algorithm for feature selection, a new variant of binary DE called BDE is proposed. Three optimization strategies are incorporated into the BDE. The first strategy is the heuristic method in initial stage, the second one is the self-adaptive parameter control, and the third one is the minimum change value to improve the exploration behaviour thus enhance the diversity. Finally, Support vector machine (SVM) is used as the classifier in 10 fold cross-validation method. The experimental results of our proposed algorithm on some benchmark datasets demonstrate the effectiveness of our algorithm. In addition, the BDE forged in this study will be of great potential in feature selection problems. |
| Author | Zhao, X. W. Ning, Q. Ji, J. C. Zhao, X. S. Bao, L. L. |
| Author_xml | – sequence: 1 givenname: X. S. surname: Zhao fullname: Zhao, X. S. organization: Northeast Normal University – sequence: 2 givenname: L. L. surname: Bao fullname: Bao, L. L. organization: Northeast Normal University – sequence: 3 givenname: Q. surname: Ning fullname: Ning, Q. organization: Northeast Normal University – sequence: 4 givenname: J. C. surname: Ji fullname: Ji, J. C. organization: Northeast Normal University – sequence: 5 givenname: X. W. surname: Zhao fullname: Zhao, X. W. email: zhaoxw303@nenu.edu.cn organization: Jilin University |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/29106044$$D View this record in MEDLINE/PubMed |
| BookMark | eNqFkc9vFCEUx4mpsT_s1aMh8eJl1_cYlmGOa-3WTVo9VM-EYaHSMFBhpqb_vWy3rkkTY0IChM_38d73e0wOYoqWkDcIcwRgHwYf3ZwBtgAg8QU5QinkDNsFHuzPvDkkp6XcVgQaJlrZvSKHrEMQwPkR0ctI18NdTvd2Qz_6qPMD_eSds9nG0etAz-9TmEafIl2Gm5T9-GOgLmW6snqcsqXXNljz-O4jvUr1MgWd6bW_iY9AeU1eOh2KPX3aT8j31fm3s8-zy68X67Pl5cxwBJz1zCFfGN33nLfcdU4jk9aBEEIzdA00rW5BtEI7I3Vd0iwM67tG94Z1i01zQt7v6tZhfk62jGrwxdgQdLRpKgo7gdBIJrCi756ht2nKsXanGDAuJYpOVOrtEzX1g92ou-yHao_6Y14F5jvA5FRKtm6PIKhtQGobkNoHVAX8mcD4UW_NG7P24d-ybif75YN9-M8n6mr9ZfVX-xv2TaS6 |
| CitedBy_id | crossref_primary_10_1007_s00500_020_04790_2 crossref_primary_10_1007_s43926_023_00042_5 crossref_primary_10_3390_math9243329 crossref_primary_10_1007_s10586_022_03725_w crossref_primary_10_1109_TCYB_2019_2951402 crossref_primary_10_1186_s12859_023_05247_7 crossref_primary_10_1016_j_cosrev_2023_100559 crossref_primary_10_1016_j_ibmed_2024_100192 crossref_primary_10_1080_03610918_2022_2046087 crossref_primary_10_1007_s00500_023_09087_8 crossref_primary_10_1007_s00521_021_06340_9 crossref_primary_10_1109_TCYB_2022_3213236 crossref_primary_10_1109_TNB_2019_2930647 crossref_primary_10_1007_s11047_023_09951_4 crossref_primary_10_1016_j_compeleceng_2025_110232 crossref_primary_10_1016_j_knosys_2024_112699 crossref_primary_10_1016_j_ymeth_2023_03_005 crossref_primary_10_1016_j_patrec_2020_02_021 |
| Cites_doi | 10.1186/s12859-016-1201-8 10.1111/j.1467-9868.2010.00740.x 10.1016/S0140-6736(05)17878-7 10.1016/j.jtbi.2016.03.030 10.1007/978-3-540-70706-6_24 10.1016/j.compbiolchem.2010.07.002 10.1109/CEC.2006.1688716 10.1109/TEVC.2015.2504420 10.1016/j.neucom.2016.09.078 10.1016/j.patrec.2008.02.006 10.1016/j.asoc.2013.09.018 10.1007/s00158-010-0523-9 10.1093/nar/gkn764 10.1109/ICPR.1996.546751 10.1166/asem.2012.1223 10.1016/j.eswa.2016.02.042 10.1109/TNB.2013.2294716 10.1016/j.patrec.2005.12.018 10.1016/j.scient.2012.10.034 10.1002/minf.201400065 10.1093/bib/bbn005 10.1162/153244303322753616 10.1109/ISCAS.2013.6571881 10.1016/j.asoc.2012.11.042 10.1016/S1088-467X(97)00008-5 10.1021/ci049875d 10.1002/0471227587 10.1109/MicroCom.2016.7522533 10.1109/AICI.2009.438 10.1109/TPAMI.2004.105 10.1016/j.eswa.2016.06.004 10.1016/j.compbiolchem.2007.09.005 10.1109/TAP.2008.924684 10.1023/A:1008202821328 10.1016/j.eswa.2009.03.032 10.1371/journal.pone.0028210 10.1016/j.ins.2011.09.001 10.1016/j.neucom.2016.03.101 10.1007/s00500-007-0193-8 10.1093/bioinformatics/16.10.906 10.1016/S0004-3702(97)00043-X 10.1073/pnas.091062498 10.1093/bioinformatics/bth469 10.1016/j.engappai.2010.12.002 |
| ContentType | Journal Article |
| Copyright | 2018 Wiley‐VCH Verlag GmbH & Co. KGaA, Weinheim 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim. |
| Copyright_xml | – notice: 2018 Wiley‐VCH Verlag GmbH & Co. KGaA, Weinheim – notice: 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim. |
| DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7QO 7TM 7U7 8FD C1K FR3 JQ2 K9. P64 7X8 |
| DOI | 10.1002/minf.201700081 |
| DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Biotechnology Research Abstracts Nucleic Acids Abstracts Toxicology Abstracts Technology Research Database Environmental Sciences and Pollution Management Engineering Research Database ProQuest Computer Science Collection ProQuest Health & Medical Complete (Alumni) Biotechnology and BioEngineering Abstracts MEDLINE - Academic |
| DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Biotechnology Research Abstracts Technology Research Database Toxicology Abstracts Nucleic Acids Abstracts ProQuest Computer Science Collection ProQuest Health & Medical Complete (Alumni) Engineering Research Database Biotechnology and BioEngineering Abstracts Environmental Sciences and Pollution Management MEDLINE - Academic |
| DatabaseTitleList | Biotechnology Research Abstracts CrossRef MEDLINE MEDLINE - Academic |
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Pharmacy, Therapeutics, & Pharmacology |
| EISSN | 1868-1751 |
| EndPage | n/a |
| ExternalDocumentID | 29106044 10_1002_minf_201700081 MINF201700081 |
| Genre | article Research Support, Non-U.S. Gov't Journal Article |
| GrantInformation_xml | – fundername: National Natural Science Foundation of China funderid: 61403077 – fundername: Natural Science Foundation for Youths of JiLin Province funderid: 20150520061JH – fundername: China Postdoctoral Science Foundation funderid: 2014M550166; 2015T80285 |
| GroupedDBID | --- .3N .Y3 05W 0R~ 10A 1OC 31~ 33P 3SF 50Y 50Z 52S 52U 52W 53G 5VS 702 8-0 8-1 8-3 8-4 8-5 AAESR AAEVG AAHHS AAHQN AAMNL AANHP AANLZ AAONW AASGY AAXRX AAYCA AAZKR ABCUV ABJNI ABPVW ACAHQ ACBWZ ACCFJ ACCZN ACGFS ACIWK ACPOU ACPRK ACRPL ACXBN ACXQS ACYXJ ADBBV ADEOM ADIZJ ADKYN ADMGS ADNMO ADOZA ADXAS ADZMN AEEZP AEIGN AEIMD AENEX AEQDE AEUQT AEUYR AFBPY AFFPM AFGKR AFPWT AFRAH AFWVQ AFZJQ AHBTC AHMBA AITYG AIURR AIWBW AJBDE AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ASPBG ATUGU AUFTA AVWKF AZBYB AZFZN AZVAB BAFTC BDRZF BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BY8 D-E D-F DCZOG DPXWK DR2 DRFUL DRSTM DU5 EBD EBS EJD EMOBN F00 F01 F04 FEDTE G-S G.N GODZA H.T H.X HGLYW HVGLF HZ~ J0M LATKE LEEKS LH4 LITHE LOXES LUTES LW6 LYRES MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 NF~ O66 O9- P2W P2X PQQKQ Q.N QB0 R.K ROL RX1 SUPJJ UB1 V2E W8V W99 WBFHL WBKPD WIH WIK WOHZO WRC WXSBR WYISQ XG1 ~IA ~WT AAMMB AAYXX AEFGJ AEYWJ AGHNM AGQPQ AGXDD AGYGG AIDQK AIDYY CITATION CGR CUY CVF ECM EIF NPM 7QO 7TM 7U7 8FD C1K FR3 JQ2 K9. P64 7X8 |
| ID | FETCH-LOGICAL-c4101-b2f145cabb4474f9fa128ef0666a21f3037a70676afc8ac8a8c5c2b93abc295d3 |
| IEDL.DBID | DR2 |
| ISSN | 1868-1743 1868-1751 |
| IngestDate | Thu Oct 02 21:10:36 EDT 2025 Tue Oct 07 06:45:18 EDT 2025 Mon Jul 21 05:57:44 EDT 2025 Thu Apr 24 22:56:14 EDT 2025 Wed Oct 01 06:00:06 EDT 2025 Wed Jan 22 16:26:18 EST 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 4 |
| Keywords | Biomarker discovery Differential evolution Feature selection Cross-validation |
| Language | English |
| License | http://onlinelibrary.wiley.com/termsAndConditions#vor 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim. |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c4101-b2f145cabb4474f9fa128ef0666a21f3037a70676afc8ac8a8c5c2b93abc295d3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
| PMID | 29106044 |
| PQID | 2024881696 |
| PQPubID | 2034649 |
| PageCount | 14 |
| ParticipantIDs | proquest_miscellaneous_1961038261 proquest_journals_2024881696 pubmed_primary_29106044 crossref_primary_10_1002_minf_201700081 crossref_citationtrail_10_1002_minf_201700081 wiley_primary_10_1002_minf_201700081_MINF201700081 |
| ProviderPackageCode | CITATION AAYXX |
| PublicationCentury | 2000 |
| PublicationDate | April 2018 |
| PublicationDateYYYYMMDD | 2018-04-01 |
| PublicationDate_xml | – month: 04 year: 2018 text: April 2018 |
| PublicationDecade | 2010 |
| PublicationPlace | Germany |
| PublicationPlace_xml | – name: Germany – name: Weinheim |
| PublicationTitle | Molecular informatics |
| PublicationTitleAlternate | Mol Inform |
| PublicationYear | 2018 |
| Publisher | Wiley Subscription Services, Inc |
| Publisher_xml | – name: Wiley Subscription Services, Inc |
| References | 2010; 34 2007; 39 2004; 44 2010; 11 2015; 34 2012; 185 2013; 3 2002; 13 2004; 26 2008; 9 2008; 12 2008; 56 2005; 21 2012; 19 2006 1995 1997; 1 2008; 32 2002 2016; 367 2016; 17 2011; 6 2013; 5 2016; 56 2009; 36 2010; 42 2000; 16 1997; 11 2005; 365 1997; 97 2006; 27 2008; 29 2003; 3 2016; 20 2016; 398 2017 2016; 62 2011; 24 2009; 360 2009; 5 2014; 18 2016; 213 2014; 12 2009; 37 2010; 72 2001; 98 e_1_2_6_53_1 e_1_2_6_32_1 Liu H. (e_1_2_6_14_1) 2002; 13 e_1_2_6_30_1 e_1_2_6_19_1 e_1_2_6_13_1 e_1_2_6_36_1 e_1_2_6_59_1 e_1_2_6_11_1 e_1_2_6_34_1 e_1_2_6_17_1 e_1_2_6_15_1 e_1_2_6_38_1 e_1_2_6_57_1 e_1_2_6_43_1 e_1_2_6_41_1 Bari M. G. (e_1_2_6_23_1) 2017 loannidis J. P. (e_1_2_6_3_1) 2005; 365 e_1_2_6_9_1 e_1_2_6_5_1 e_1_2_6_49_1 e_1_2_6_22_1 e_1_2_6_28_1 e_1_2_6_45_1 e_1_2_6_26_1 e_1_2_6_47_1 Sotiriou C. (e_1_2_6_2_1) 2009; 360 e_1_2_6_52_1 Li X. J. (e_1_2_6_20_1) 2013; 5 Akbar B. (e_1_2_6_51_1) 2016; 367 e_1_2_6_54_1 e_1_2_6_10_1 e_1_2_6_31_1 e_1_2_6_50_1 Mohamad M. S. (e_1_2_6_7_1) 2009; 5 Cortes C. (e_1_2_6_55_1) 1995 e_1_2_6_35_1 e_1_2_6_12_1 e_1_2_6_33_1 e_1_2_6_18_1 e_1_2_6_39_1 e_1_2_6_56_1 e_1_2_6_16_1 e_1_2_6_37_1 e_1_2_6_58_1 e_1_2_6_42_1 e_1_2_6_21_1 e_1_2_6_40_1 e_1_2_6_8_1 e_1_2_6_4_1 Mairal J. (e_1_2_6_24_1) 2010; 11 e_1_2_6_6_1 e_1_2_6_25_1 e_1_2_6_48_1 e_1_2_6_29_1 e_1_2_6_44_1 e_1_2_6_27_1 e_1_2_6_46_1 |
| References_xml | – volume: 29 start-page: 1351 year: 2008 end-page: 1357 publication-title: Pattern Recognit. Lett. – volume: 56 start-page: 1845 year: 2008 end-page: 1852 publication-title: IEEE Trans. Antennas Propag. – volume: 367 start-page: 487 year: 2016 end-page: 511 publication-title: J. Inf. Sci. – volume: 98 start-page: 5116 year: 2001 end-page: 5121 publication-title: Proc. Natl. Acad. Sci. USA – start-page: 20 year: 1995 publication-title: Mach. Learn. – start-page: 3212 year: 2006 end-page: 3218 publication-title: Evolutionary Computation IEEE Congress – volume: 5 start-page: 207ra year: 2013 end-page: 207ra publication-title: Sci. Transl. Med. – volume: 9 start-page: 102 year: 2008 end-page: 118 publication-title: Briefings Bioinf. – volume: 18 start-page: 261 year: 2014 end-page: 276 publication-title: Appl. Soft. Comput. – volume: 12 start-page: 343 year: 2014 end-page: 353 publication-title: IEEE Transact. NanoBiosci. – volume: 36 start-page: 11570 year: 2009 end-page: 11581 publication-title: Expert. Syst. Appl. – volume: 12 start-page: 111 year: 2008 end-page: 120 publication-title: Soft. Comput. – volume: 360 start-page: 790 year: 2009 end-page: 800 publication-title: J. Med. – volume: 3 start-page: 1157 year: 2003 end-page: 1182 publication-title: J. Mach. Learn. Res. – volume: 32 start-page: 29 year: 2008 end-page: 38 publication-title: Comput. Biol. Chem. – volume: 11 start-page: 341 year: 1997 end-page: 359 publication-title: Journal of Global Optimization – volume: 27 start-page: 1067 year: 2006 end-page: 1076 publication-title: Pattern Recognit. Lett. – volume: 365 start-page: 454 year: 2005 end-page: 455 publication-title: The Lancet. – volume: 56 start-page: 28 year: 2016 end-page: 47 publication-title: Expert. Syst. Appl. – volume: 42 start-page: 939 year: 2010 end-page: 953 publication-title: Struct. Multidisciplinary Optim. – volume: 44 start-page: 1823 year: 2004 end-page: 1828 publication-title: J. Chem. Inf. Comput. – volume: 16 start-page: 906 year: 2000 end-page: 914 publication-title: Bioinformatics – volume: 6 start-page: 28210 year: 2011 publication-title: PLoS One – volume: 17 start-page: 323 year: 2016 publication-title: BMC Bioinf. – volume: 97 start-page: 273 year: 1997 end-page: 324 publication-title: Artif. Intell. – volume: 398 start-page: 96 year: 2016 end-page: 102 publication-title: J. Theor. Biol. – volume: 37 start-page: 885 year: 2009 publication-title: Nucleic Acids Res. – volume: 5 start-page: 2189 year: 2009 end-page: 2202 publication-title: Int. J. Innovative. Comput., Inf. Control – volume: 72 start-page: 417 year: 2010 end-page: 473 publication-title: Stat. Soc. B. – volume: 19 start-page: 1921 year: 2012 end-page: 1935 publication-title: Scientia Tranica – year: 2002 – volume: 34 start-page: 197 year: 2015 end-page: 215 publication-title: Mol. Inf. – volume: 11 start-page: 19 year: 2010 end-page: 60 publication-title: J. Mach. Learn. Res. – volume: 20, start-page: 606 year: 2016 end-page: 626 publication-title: IEEE Transact. Evolut. Comp. – start-page: 36 year: 2017 publication-title: Mol. Inf. – volume: 213 start-page: 54 year: 2016 end-page: 65 publication-title: Neurocomputing – volume: 21 start-page: 171 year: 2005 end-page: 178 publication-title: Bioinformatics. – volume: 34 start-page: 215 year: 2010 end-page: 225 publication-title: Comput. Biol. Chem. – volume: 13 start-page: 51 year: 2002 end-page: 60 publication-title: Genome Informatics – volume: 24 start-page: 616 year: 2011 end-page: 624 publication-title: Eng. Appl. Artif. Intel. – volume: 39, start-page: 251 year: 2007 end-page: 262 publication-title: Soft Computing in Industrial Application ASC, – volume: 3 start-page: 1969 year: 2013 end-page: 1977 publication-title: Appl. Soft. Comput. – volume: 185 start-page: 153 year: 2012 end-page: 177 publication-title: Inform. Sciences – volume: 26 start-page: 1424 year: 2004 end-page: 1437 publication-title: IEEE. T. Pattern. Anal. – volume: 1 start-page: 131 year: 1997 end-page: 156 publication-title: Intell. Data. Anal – volume: 62 start-page: 91 year: 2016 end-page: 103 publication-title: Expert. Syst. Appl. – ident: e_1_2_6_41_1 doi: 10.1186/s12859-016-1201-8 – ident: e_1_2_6_19_1 doi: 10.1111/j.1467-9868.2010.00740.x – volume: 365 start-page: 454 year: 2005 ident: e_1_2_6_3_1 publication-title: The Lancet. doi: 10.1016/S0140-6736(05)17878-7 – ident: e_1_2_6_58_1 doi: 10.1016/j.jtbi.2016.03.030 – ident: e_1_2_6_48_1 doi: 10.1007/978-3-540-70706-6_24 – ident: e_1_2_6_8_1 doi: 10.1016/j.compbiolchem.2010.07.002 – ident: e_1_2_6_35_1 doi: 10.1109/CEC.2006.1688716 – ident: e_1_2_6_29_1 doi: 10.1109/TEVC.2015.2504420 – ident: e_1_2_6_43_1 doi: 10.1016/j.neucom.2016.09.078 – ident: e_1_2_6_38_1 doi: 10.1016/j.patrec.2008.02.006 – ident: e_1_2_6_33_1 doi: 10.1016/j.asoc.2013.09.018 – ident: e_1_2_6_47_1 doi: 10.1007/s00158-010-0523-9 – volume: 13 start-page: 51 year: 2002 ident: e_1_2_6_14_1 publication-title: Genome Informatics – ident: e_1_2_6_59_1 doi: 10.1093/nar/gkn764 – start-page: 20 year: 1995 ident: e_1_2_6_55_1 publication-title: Mach. Learn. – start-page: 36 year: 2017 ident: e_1_2_6_23_1 publication-title: Mol. Inf. – ident: e_1_2_6_17_1 doi: 10.1109/ICPR.1996.546751 – ident: e_1_2_6_26_1 doi: 10.1166/asem.2012.1223 – ident: e_1_2_6_37_1 doi: 10.1016/j.eswa.2016.02.042 – ident: e_1_2_6_40_1 doi: 10.1109/TNB.2013.2294716 – ident: e_1_2_6_21_1 doi: 10.1016/j.patrec.2005.12.018 – volume: 360 start-page: 790 year: 2009 ident: e_1_2_6_2_1 publication-title: J. Med. – ident: e_1_2_6_25_1 doi: 10.1016/j.scient.2012.10.034 – ident: e_1_2_6_15_1 – ident: e_1_2_6_39_1 doi: 10.1002/minf.201400065 – ident: e_1_2_6_6_1 doi: 10.1093/bib/bbn005 – ident: e_1_2_6_11_1 doi: 10.1162/153244303322753616 – ident: e_1_2_6_42_1 doi: 10.1109/ISCAS.2013.6571881 – volume: 367 start-page: 487 year: 2016 ident: e_1_2_6_51_1 publication-title: J. Inf. Sci. – ident: e_1_2_6_50_1 doi: 10.1016/j.asoc.2012.11.042 – volume: 5 start-page: 207ra year: 2013 ident: e_1_2_6_20_1 publication-title: Sci. Transl. Med. – ident: e_1_2_6_10_1 doi: 10.1016/S1088-467X(97)00008-5 – ident: e_1_2_6_18_1 doi: 10.1021/ci049875d – ident: e_1_2_6_4_1 doi: 10.1002/0471227587 – ident: e_1_2_6_53_1 doi: 10.1109/MicroCom.2016.7522533 – volume: 11 start-page: 19 year: 2010 ident: e_1_2_6_24_1 publication-title: J. Mach. Learn. Res. – ident: e_1_2_6_49_1 doi: 10.1109/AICI.2009.438 – ident: e_1_2_6_32_1 doi: 10.1109/TPAMI.2004.105 – ident: e_1_2_6_56_1 – ident: e_1_2_6_52_1 doi: 10.1016/j.eswa.2016.06.004 – volume: 5 start-page: 2189 year: 2009 ident: e_1_2_6_7_1 publication-title: Int. J. Innovative. Comput., Inf. Control – ident: e_1_2_6_34_1 doi: 10.1016/j.compbiolchem.2007.09.005 – ident: e_1_2_6_36_1 doi: 10.1109/TAP.2008.924684 – ident: e_1_2_6_45_1 doi: 10.1023/A:1008202821328 – ident: e_1_2_6_30_1 doi: 10.1016/j.eswa.2009.03.032 – ident: e_1_2_6_9_1 doi: 10.1371/journal.pone.0028210 – ident: e_1_2_6_16_1 – ident: e_1_2_6_28_1 doi: 10.1016/j.ins.2011.09.001 – ident: e_1_2_6_44_1 doi: 10.1016/j.neucom.2016.03.101 – ident: e_1_2_6_46_1 – ident: e_1_2_6_31_1 doi: 10.1007/s00500-007-0193-8 – ident: e_1_2_6_13_1 doi: 10.1093/bioinformatics/16.10.906 – ident: e_1_2_6_12_1 doi: 10.1016/S0004-3702(97)00043-X – ident: e_1_2_6_22_1 doi: 10.1073/pnas.091062498 – ident: e_1_2_6_57_1 – ident: e_1_2_6_54_1 – ident: e_1_2_6_5_1 doi: 10.1093/bioinformatics/bth469 – ident: e_1_2_6_27_1 doi: 10.1016/j.engappai.2010.12.002 |
| SSID | ssj0000326789 |
| Score | 2.2924356 |
| Snippet | The discovery of biomarkers from high‐dimensional data is a very challenging task in cancer diagnoses. On the one hand, biomarker discovery is the so‐called... The discovery of biomarkers from high-dimensional data is a very challenging task in cancer diagnoses. On the one hand, biomarker discovery is the so-called... |
| SourceID | proquest pubmed crossref wiley |
| SourceType | Aggregation Database Index Database Enrichment Source Publisher |
| StartPage | e1700081 |
| SubjectTerms | Adaptive control Algorithms Bioinformatics Biomarker discovery Biomarkers Biomarkers, Tumor - analysis Biomarkers, Tumor - genetics Cancer Computational Biology - methods Cross-validation Differential evolution Evolution, Molecular Evolutionary algorithms Exploratory behavior Feature selection Heuristic methods Humans Optimization Performance enhancement Support Vector Machine Support vector machines |
| Title | An Improved Binary Differential Evolution Algorithm for Feature Selection in Molecular Signatures |
| URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fminf.201700081 https://www.ncbi.nlm.nih.gov/pubmed/29106044 https://www.proquest.com/docview/2024881696 https://www.proquest.com/docview/1961038261 |
| Volume | 37 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVWIB databaseName: Wiley Online Library - Core collection (SURFmarket) issn: 1868-1743 databaseCode: DR2 dateStart: 20100101 customDbUrl: isFulltext: true eissn: 1868-1751 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000326789 providerName: Wiley-Blackwell |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1bT9swFD6aeOJl3LYRKJORpvLSQOI4lz52GxWbBKpWkHiLbMeBipKipkUqv55jO0kpaJrEpDwkOk7i2Ofy2bG_A_BNZV4oszhzZahTmAnG3UR2Y5eyHME9i7gvDNvnRXR2xX5fh9cvdvFbfohmwk1bhvHX2sC5KE-WpKH32AN6aVZswho6YT-IzJjqD20mWTwEJ7FJg6dZ4V2NvmviRo-erD5hNTC9QZur4NVEn_4G8LredtHJ3fF8Jo7l0ytKx__5sE34WEFT0rO6tAUfVLEN7YHltl50yOVyq1bZIW0yWLJeL3aA9wpiZyhURr6bXb7kZ5V9Bb3ImJw-VlpOeuObyXQ0u70niJiJBqHzqSJDk5FHy0cFOa-z9pLh6MaSj5af4Kp_evnjzK3yN7iSoaW7guY-CyUXgrEY-z7nGAxVrkdMnPo5Bs-YxxgtI57LhOORyFBS0Q24kLQbZsFnWCsmhdoFEgQKHSGCy1BpxkApIsU9FTAhEB75SeaAW3deKityc51jY5xaWmaa6lZNm1Z14Kgp_2BpPf5aslXrQlqZd4lSio7Pj7qRA4eNGA1T_23hhZrMyxRdmyafxxGqA1-sDjWvogjSIo8xB6jRhH_UIT3_ddFvrvbec9M-rON5YtcctWBtNp2rA4RTM_HVmMwzBH4WfA |
| linkProvider | Wiley-Blackwell |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1bb9MwFD4a4wFeuIxbYAxPQuNl2RLHufSxsFXdpdXEOom3yHacUdGlqBek8es5x05SlQkhgZSXxE7i2Ofy2Tn-DsB7UwSxLtLC1zGlMFNC-pnupD4XJYJ7kchQWbbPYdK_Eqdf4iaakPbCOH6IdsGNNMPaa1JwWpA-XLGG3uAQUGxWav3aPbgvEpysEC76zNtllgDhSWoT4REvvE_4u6FuDPjh-iPWXdMdvLkOX63_6T0G1bTchZ18O1gu1IH--Rup43992hN4VKNT1nXi9BQ2TLUFexeO3vp2n41Wu7Xm-2yPXayIr2-fgexWzC1SmIJ9tBt92VGdgAUNyYQd_6gFnXUn19PZePH1hiFoZoRDlzPDLm1SHiofV2zQJO5ll-Nrxz86fw5XvePRp75fp3DwtUBl9xUvQxFrqZQQKQ5_KdEfmpImTZKHJfrPVKboMBNZ6kzikelYc9WJpNK8ExfRC9isppV5BSyKDNpCxJexIdJArRIjAxMJpRAhhVnhgd-MXq5rfnNKszHJHTMzz6lX87ZXPfjQ1v_umD3-WHO7EYa81vA5lnK0fWHSSTzYbYtRN-mHi6zMdDnP0boR_zxOUj146YSofRVHnJYEQnjArSj8pQ354GTYa89e_8tN7-BBfzQ4z89Phmdv4CFez1wI0jZsLmZL8xbR1ULtWP35BXi1Gp0 |
| linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1bT9swFD7aOgntBbbBWBhsRprghUDiOLfHjlLBBlXFRdpbZDsOqyhp1csk-PUc20mqbkKTNikviZ3Esc_ls3P8HYAvKvdCmce5K0Odwkww7iYyjV3KCgT3LOK-MGyfvej0hn37EdbRhHovjOWHaBbctGYYe60VXI3z4mjBGnqPQ6Bjs2Lj117CKxamiY7q61zSZpnFQ3gSm0R4mhfe1fi7pm706NHyI5Zd0x94cxm-Gv_TXQNRt9yGndwdzmfiUD7-Rur4X5_2BlYrdEraVpzewgtVvoO9vqW3fjgg14vdWtMDskf6C-Lrh3Xg7ZLYRQqVk69moy_pVAlY0JAMycmvStBJe3g7mgxmP-8Jgmaiceh8osiVScqjywcluagT95Krwa3lH51uwE335Pr41K1SOLiSobK7ghY-CyUXgrEYh7_g6A9VoSdNnPoF-s-Yx-gwI17IhOORyFBSkQZcSJqGefAeWuWoVB-ABIFCW4j4MlSaNFCKSHFPBUwIREh-kjvg1qOXyYrfXKfZGGaWmZlmulezplcd2G_qjy2zx7M1t2thyCoNn2IpRdvnR2nkwG5TjLqpf7jwUo3m0wytm-afx0mqA5tWiJpXUcRpkceYA9SIwl_akF2c9brN2da_3PQZVvqdbnZ-1vv-EV7j5cRGIG1DazaZqx0EVzPxyajPE_uTGiE |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=An+Improved+Binary+Differential+Evolution+Algorithm+for+Feature+Selection+in+Molecular+Signatures&rft.jtitle=Molecular+informatics&rft.au=Zhao%2C+X+S&rft.au=Bao%2C+L+L&rft.au=Ning%2C+Q&rft.au=Ji%2C+J+C&rft.date=2018-04-01&rft.issn=1868-1751&rft.eissn=1868-1751&rft.volume=37&rft.issue=4&rft.spage=e1700081&rft_id=info:doi/10.1002%2Fminf.201700081&rft.externalDBID=NO_FULL_TEXT |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1868-1743&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1868-1743&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1868-1743&client=summon |