An Improved Binary Differential Evolution Algorithm for Feature Selection in Molecular Signatures

The discovery of biomarkers from high‐dimensional data is a very challenging task in cancer diagnoses. On the one hand, biomarker discovery is the so‐called high‐dimensional small‐sample problem. On the other hand, these data are redundant and noisy. In recent years, biomarker discovery from high‐th...

Full description

Saved in:
Bibliographic Details
Published inMolecular informatics Vol. 37; no. 4; pp. e1700081 - n/a
Main Authors Zhao, X. S., Bao, L. L., Ning, Q., Ji, J. C., Zhao, X. W.
Format Journal Article
LanguageEnglish
Published Germany Wiley Subscription Services, Inc 01.04.2018
Subjects
Online AccessGet full text
ISSN1868-1743
1868-1751
1868-1751
DOI10.1002/minf.201700081

Cover

Abstract The discovery of biomarkers from high‐dimensional data is a very challenging task in cancer diagnoses. On the one hand, biomarker discovery is the so‐called high‐dimensional small‐sample problem. On the other hand, these data are redundant and noisy. In recent years, biomarker discovery from high‐throughput biological data has become an increasingly important emerging topic in the field of bioinformatics. In this study, we propose a binary differential evolution algorithm for feature selection. Firstly, we suggest using a two‐stage approach, where three filter methods including the Fisher score, T‐statistics, and Information gain are used to generate the feature pool for input to differential evolution (DE). Secondly, in order to improve the performance of differential evolution algorithm for feature selection, a new variant of binary DE called BDE is proposed. Three optimization strategies are incorporated into the BDE. The first strategy is the heuristic method in initial stage, the second one is the self‐adaptive parameter control, and the third one is the minimum change value to improve the exploration behaviour thus enhance the diversity. Finally, Support vector machine (SVM) is used as the classifier in 10 fold cross‐validation method. The experimental results of our proposed algorithm on some benchmark datasets demonstrate the effectiveness of our algorithm. In addition, the BDE forged in this study will be of great potential in feature selection problems.
AbstractList The discovery of biomarkers from high‐dimensional data is a very challenging task in cancer diagnoses. On the one hand, biomarker discovery is the so‐called high‐dimensional small‐sample problem. On the other hand, these data are redundant and noisy. In recent years, biomarker discovery from high‐throughput biological data has become an increasingly important emerging topic in the field of bioinformatics. In this study, we propose a binary differential evolution algorithm for feature selection. Firstly, we suggest using a two‐stage approach, where three filter methods including the Fisher score, T‐statistics, and Information gain are used to generate the feature pool for input to differential evolution (DE). Secondly, in order to improve the performance of differential evolution algorithm for feature selection, a new variant of binary DE called BDE is proposed. Three optimization strategies are incorporated into the BDE. The first strategy is the heuristic method in initial stage, the second one is the self‐adaptive parameter control, and the third one is the minimum change value to improve the exploration behaviour thus enhance the diversity. Finally, Support vector machine (SVM) is used as the classifier in 10 fold cross‐validation method. The experimental results of our proposed algorithm on some benchmark datasets demonstrate the effectiveness of our algorithm. In addition, the BDE forged in this study will be of great potential in feature selection problems.
The discovery of biomarkers from high-dimensional data is a very challenging task in cancer diagnoses. On the one hand, biomarker discovery is the so-called high-dimensional small-sample problem. On the other hand, these data are redundant and noisy. In recent years, biomarker discovery from high-throughput biological data has become an increasingly important emerging topic in the field of bioinformatics. In this study, we propose a binary differential evolution algorithm for feature selection. Firstly, we suggest using a two-stage approach, where three filter methods including the Fisher score, T-statistics, and Information gain are used to generate the feature pool for input to differential evolution (DE). Secondly, in order to improve the performance of differential evolution algorithm for feature selection, a new variant of binary DE called BDE is proposed. Three optimization strategies are incorporated into the BDE. The first strategy is the heuristic method in initial stage, the second one is the self-adaptive parameter control, and the third one is the minimum change value to improve the exploration behaviour thus enhance the diversity. Finally, Support vector machine (SVM) is used as the classifier in 10 fold cross-validation method. The experimental results of our proposed algorithm on some benchmark datasets demonstrate the effectiveness of our algorithm. In addition, the BDE forged in this study will be of great potential in feature selection problems.The discovery of biomarkers from high-dimensional data is a very challenging task in cancer diagnoses. On the one hand, biomarker discovery is the so-called high-dimensional small-sample problem. On the other hand, these data are redundant and noisy. In recent years, biomarker discovery from high-throughput biological data has become an increasingly important emerging topic in the field of bioinformatics. In this study, we propose a binary differential evolution algorithm for feature selection. Firstly, we suggest using a two-stage approach, where three filter methods including the Fisher score, T-statistics, and Information gain are used to generate the feature pool for input to differential evolution (DE). Secondly, in order to improve the performance of differential evolution algorithm for feature selection, a new variant of binary DE called BDE is proposed. Three optimization strategies are incorporated into the BDE. The first strategy is the heuristic method in initial stage, the second one is the self-adaptive parameter control, and the third one is the minimum change value to improve the exploration behaviour thus enhance the diversity. Finally, Support vector machine (SVM) is used as the classifier in 10 fold cross-validation method. The experimental results of our proposed algorithm on some benchmark datasets demonstrate the effectiveness of our algorithm. In addition, the BDE forged in this study will be of great potential in feature selection problems.
Author Zhao, X. W.
Ning, Q.
Ji, J. C.
Zhao, X. S.
Bao, L. L.
Author_xml – sequence: 1
  givenname: X. S.
  surname: Zhao
  fullname: Zhao, X. S.
  organization: Northeast Normal University
– sequence: 2
  givenname: L. L.
  surname: Bao
  fullname: Bao, L. L.
  organization: Northeast Normal University
– sequence: 3
  givenname: Q.
  surname: Ning
  fullname: Ning, Q.
  organization: Northeast Normal University
– sequence: 4
  givenname: J. C.
  surname: Ji
  fullname: Ji, J. C.
  organization: Northeast Normal University
– sequence: 5
  givenname: X. W.
  surname: Zhao
  fullname: Zhao, X. W.
  email: zhaoxw303@nenu.edu.cn
  organization: Jilin University
BackLink https://www.ncbi.nlm.nih.gov/pubmed/29106044$$D View this record in MEDLINE/PubMed
BookMark eNqFkc9vFCEUx4mpsT_s1aMh8eJl1_cYlmGOa-3WTVo9VM-EYaHSMFBhpqb_vWy3rkkTY0IChM_38d73e0wOYoqWkDcIcwRgHwYf3ZwBtgAg8QU5QinkDNsFHuzPvDkkp6XcVgQaJlrZvSKHrEMQwPkR0ctI18NdTvd2Qz_6qPMD_eSds9nG0etAz-9TmEafIl2Gm5T9-GOgLmW6snqcsqXXNljz-O4jvUr1MgWd6bW_iY9AeU1eOh2KPX3aT8j31fm3s8-zy68X67Pl5cxwBJz1zCFfGN33nLfcdU4jk9aBEEIzdA00rW5BtEI7I3Vd0iwM67tG94Z1i01zQt7v6tZhfk62jGrwxdgQdLRpKgo7gdBIJrCi756ht2nKsXanGDAuJYpOVOrtEzX1g92ou-yHao_6Y14F5jvA5FRKtm6PIKhtQGobkNoHVAX8mcD4UW_NG7P24d-ybif75YN9-M8n6mr9ZfVX-xv2TaS6
CitedBy_id crossref_primary_10_1007_s00500_020_04790_2
crossref_primary_10_1007_s43926_023_00042_5
crossref_primary_10_3390_math9243329
crossref_primary_10_1007_s10586_022_03725_w
crossref_primary_10_1109_TCYB_2019_2951402
crossref_primary_10_1186_s12859_023_05247_7
crossref_primary_10_1016_j_cosrev_2023_100559
crossref_primary_10_1016_j_ibmed_2024_100192
crossref_primary_10_1080_03610918_2022_2046087
crossref_primary_10_1007_s00500_023_09087_8
crossref_primary_10_1007_s00521_021_06340_9
crossref_primary_10_1109_TCYB_2022_3213236
crossref_primary_10_1109_TNB_2019_2930647
crossref_primary_10_1007_s11047_023_09951_4
crossref_primary_10_1016_j_compeleceng_2025_110232
crossref_primary_10_1016_j_knosys_2024_112699
crossref_primary_10_1016_j_ymeth_2023_03_005
crossref_primary_10_1016_j_patrec_2020_02_021
Cites_doi 10.1186/s12859-016-1201-8
10.1111/j.1467-9868.2010.00740.x
10.1016/S0140-6736(05)17878-7
10.1016/j.jtbi.2016.03.030
10.1007/978-3-540-70706-6_24
10.1016/j.compbiolchem.2010.07.002
10.1109/CEC.2006.1688716
10.1109/TEVC.2015.2504420
10.1016/j.neucom.2016.09.078
10.1016/j.patrec.2008.02.006
10.1016/j.asoc.2013.09.018
10.1007/s00158-010-0523-9
10.1093/nar/gkn764
10.1109/ICPR.1996.546751
10.1166/asem.2012.1223
10.1016/j.eswa.2016.02.042
10.1109/TNB.2013.2294716
10.1016/j.patrec.2005.12.018
10.1016/j.scient.2012.10.034
10.1002/minf.201400065
10.1093/bib/bbn005
10.1162/153244303322753616
10.1109/ISCAS.2013.6571881
10.1016/j.asoc.2012.11.042
10.1016/S1088-467X(97)00008-5
10.1021/ci049875d
10.1002/0471227587
10.1109/MicroCom.2016.7522533
10.1109/AICI.2009.438
10.1109/TPAMI.2004.105
10.1016/j.eswa.2016.06.004
10.1016/j.compbiolchem.2007.09.005
10.1109/TAP.2008.924684
10.1023/A:1008202821328
10.1016/j.eswa.2009.03.032
10.1371/journal.pone.0028210
10.1016/j.ins.2011.09.001
10.1016/j.neucom.2016.03.101
10.1007/s00500-007-0193-8
10.1093/bioinformatics/16.10.906
10.1016/S0004-3702(97)00043-X
10.1073/pnas.091062498
10.1093/bioinformatics/bth469
10.1016/j.engappai.2010.12.002
ContentType Journal Article
Copyright 2018 Wiley‐VCH Verlag GmbH & Co. KGaA, Weinheim
2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
Copyright_xml – notice: 2018 Wiley‐VCH Verlag GmbH & Co. KGaA, Weinheim
– notice: 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7QO
7TM
7U7
8FD
C1K
FR3
JQ2
K9.
P64
7X8
DOI 10.1002/minf.201700081
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Biotechnology Research Abstracts
Nucleic Acids Abstracts
Toxicology Abstracts
Technology Research Database
Environmental Sciences and Pollution Management
Engineering Research Database
ProQuest Computer Science Collection
ProQuest Health & Medical Complete (Alumni)
Biotechnology and BioEngineering Abstracts
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Biotechnology Research Abstracts
Technology Research Database
Toxicology Abstracts
Nucleic Acids Abstracts
ProQuest Computer Science Collection
ProQuest Health & Medical Complete (Alumni)
Engineering Research Database
Biotechnology and BioEngineering Abstracts
Environmental Sciences and Pollution Management
MEDLINE - Academic
DatabaseTitleList Biotechnology Research Abstracts
CrossRef
MEDLINE
MEDLINE - Academic

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Pharmacy, Therapeutics, & Pharmacology
EISSN 1868-1751
EndPage n/a
ExternalDocumentID 29106044
10_1002_minf_201700081
MINF201700081
Genre article
Research Support, Non-U.S. Gov't
Journal Article
GrantInformation_xml – fundername: National Natural Science Foundation of China
  funderid: 61403077
– fundername: Natural Science Foundation for Youths of JiLin Province
  funderid: 20150520061JH
– fundername: China Postdoctoral Science Foundation
  funderid: 2014M550166; 2015T80285
GroupedDBID ---
.3N
.Y3
05W
0R~
10A
1OC
31~
33P
3SF
50Y
50Z
52S
52U
52W
53G
5VS
702
8-0
8-1
8-3
8-4
8-5
AAESR
AAEVG
AAHHS
AAHQN
AAMNL
AANHP
AANLZ
AAONW
AASGY
AAXRX
AAYCA
AAZKR
ABCUV
ABJNI
ABPVW
ACAHQ
ACBWZ
ACCFJ
ACCZN
ACGFS
ACIWK
ACPOU
ACPRK
ACRPL
ACXBN
ACXQS
ACYXJ
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADNMO
ADOZA
ADXAS
ADZMN
AEEZP
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFFPM
AFGKR
AFPWT
AFRAH
AFWVQ
AFZJQ
AHBTC
AHMBA
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ASPBG
ATUGU
AUFTA
AVWKF
AZBYB
AZFZN
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BY8
D-E
D-F
DCZOG
DPXWK
DR2
DRFUL
DRSTM
DU5
EBD
EBS
EJD
EMOBN
F00
F01
F04
FEDTE
G-S
G.N
GODZA
H.T
H.X
HGLYW
HVGLF
HZ~
J0M
LATKE
LEEKS
LH4
LITHE
LOXES
LUTES
LW6
LYRES
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
NF~
O66
O9-
P2W
P2X
PQQKQ
Q.N
QB0
R.K
ROL
RX1
SUPJJ
UB1
V2E
W8V
W99
WBFHL
WBKPD
WIH
WIK
WOHZO
WRC
WXSBR
WYISQ
XG1
~IA
~WT
AAMMB
AAYXX
AEFGJ
AEYWJ
AGHNM
AGQPQ
AGXDD
AGYGG
AIDQK
AIDYY
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7QO
7TM
7U7
8FD
C1K
FR3
JQ2
K9.
P64
7X8
ID FETCH-LOGICAL-c4101-b2f145cabb4474f9fa128ef0666a21f3037a70676afc8ac8a8c5c2b93abc295d3
IEDL.DBID DR2
ISSN 1868-1743
1868-1751
IngestDate Thu Oct 02 21:10:36 EDT 2025
Tue Oct 07 06:45:18 EDT 2025
Mon Jul 21 05:57:44 EDT 2025
Thu Apr 24 22:56:14 EDT 2025
Wed Oct 01 06:00:06 EDT 2025
Wed Jan 22 16:26:18 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 4
Keywords Biomarker discovery
Differential evolution
Feature selection
Cross-validation
Language English
License http://onlinelibrary.wiley.com/termsAndConditions#vor
2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c4101-b2f145cabb4474f9fa128ef0666a21f3037a70676afc8ac8a8c5c2b93abc295d3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
PMID 29106044
PQID 2024881696
PQPubID 2034649
PageCount 14
ParticipantIDs proquest_miscellaneous_1961038261
proquest_journals_2024881696
pubmed_primary_29106044
crossref_primary_10_1002_minf_201700081
crossref_citationtrail_10_1002_minf_201700081
wiley_primary_10_1002_minf_201700081_MINF201700081
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate April 2018
PublicationDateYYYYMMDD 2018-04-01
PublicationDate_xml – month: 04
  year: 2018
  text: April 2018
PublicationDecade 2010
PublicationPlace Germany
PublicationPlace_xml – name: Germany
– name: Weinheim
PublicationTitle Molecular informatics
PublicationTitleAlternate Mol Inform
PublicationYear 2018
Publisher Wiley Subscription Services, Inc
Publisher_xml – name: Wiley Subscription Services, Inc
References 2010; 34
2007; 39
2004; 44
2010; 11
2015; 34
2012; 185
2013; 3
2002; 13
2004; 26
2008; 9
2008; 12
2008; 56
2005; 21
2012; 19
2006
1995
1997; 1
2008; 32
2002
2016; 367
2016; 17
2011; 6
2013; 5
2016; 56
2009; 36
2010; 42
2000; 16
1997; 11
2005; 365
1997; 97
2006; 27
2008; 29
2003; 3
2016; 20
2016; 398
2017
2016; 62
2011; 24
2009; 360
2009; 5
2014; 18
2016; 213
2014; 12
2009; 37
2010; 72
2001; 98
e_1_2_6_53_1
e_1_2_6_32_1
Liu H. (e_1_2_6_14_1) 2002; 13
e_1_2_6_30_1
e_1_2_6_19_1
e_1_2_6_13_1
e_1_2_6_36_1
e_1_2_6_59_1
e_1_2_6_11_1
e_1_2_6_34_1
e_1_2_6_17_1
e_1_2_6_15_1
e_1_2_6_38_1
e_1_2_6_57_1
e_1_2_6_43_1
e_1_2_6_41_1
Bari M. G. (e_1_2_6_23_1) 2017
loannidis J. P. (e_1_2_6_3_1) 2005; 365
e_1_2_6_9_1
e_1_2_6_5_1
e_1_2_6_49_1
e_1_2_6_22_1
e_1_2_6_28_1
e_1_2_6_45_1
e_1_2_6_26_1
e_1_2_6_47_1
Sotiriou C. (e_1_2_6_2_1) 2009; 360
e_1_2_6_52_1
Li X. J. (e_1_2_6_20_1) 2013; 5
Akbar B. (e_1_2_6_51_1) 2016; 367
e_1_2_6_54_1
e_1_2_6_10_1
e_1_2_6_31_1
e_1_2_6_50_1
Mohamad M. S. (e_1_2_6_7_1) 2009; 5
Cortes C. (e_1_2_6_55_1) 1995
e_1_2_6_35_1
e_1_2_6_12_1
e_1_2_6_33_1
e_1_2_6_18_1
e_1_2_6_39_1
e_1_2_6_56_1
e_1_2_6_16_1
e_1_2_6_37_1
e_1_2_6_58_1
e_1_2_6_42_1
e_1_2_6_21_1
e_1_2_6_40_1
e_1_2_6_8_1
e_1_2_6_4_1
Mairal J. (e_1_2_6_24_1) 2010; 11
e_1_2_6_6_1
e_1_2_6_25_1
e_1_2_6_48_1
e_1_2_6_29_1
e_1_2_6_44_1
e_1_2_6_27_1
e_1_2_6_46_1
References_xml – volume: 29
  start-page: 1351
  year: 2008
  end-page: 1357
  publication-title: Pattern Recognit. Lett.
– volume: 56
  start-page: 1845
  year: 2008
  end-page: 1852
  publication-title: IEEE Trans. Antennas Propag.
– volume: 367
  start-page: 487
  year: 2016
  end-page: 511
  publication-title: J. Inf. Sci.
– volume: 98
  start-page: 5116
  year: 2001
  end-page: 5121
  publication-title: Proc. Natl. Acad. Sci. USA
– start-page: 20
  year: 1995
  publication-title: Mach. Learn.
– start-page: 3212
  year: 2006
  end-page: 3218
  publication-title: Evolutionary Computation IEEE Congress
– volume: 5
  start-page: 207ra
  year: 2013
  end-page: 207ra
  publication-title: Sci. Transl. Med.
– volume: 9
  start-page: 102
  year: 2008
  end-page: 118
  publication-title: Briefings Bioinf.
– volume: 18
  start-page: 261
  year: 2014
  end-page: 276
  publication-title: Appl. Soft. Comput.
– volume: 12
  start-page: 343
  year: 2014
  end-page: 353
  publication-title: IEEE Transact. NanoBiosci.
– volume: 36
  start-page: 11570
  year: 2009
  end-page: 11581
  publication-title: Expert. Syst. Appl.
– volume: 12
  start-page: 111
  year: 2008
  end-page: 120
  publication-title: Soft. Comput.
– volume: 360
  start-page: 790
  year: 2009
  end-page: 800
  publication-title: J. Med.
– volume: 3
  start-page: 1157
  year: 2003
  end-page: 1182
  publication-title: J. Mach. Learn. Res.
– volume: 32
  start-page: 29
  year: 2008
  end-page: 38
  publication-title: Comput. Biol. Chem.
– volume: 11
  start-page: 341
  year: 1997
  end-page: 359
  publication-title: Journal of Global Optimization
– volume: 27
  start-page: 1067
  year: 2006
  end-page: 1076
  publication-title: Pattern Recognit. Lett.
– volume: 365
  start-page: 454
  year: 2005
  end-page: 455
  publication-title: The Lancet.
– volume: 56
  start-page: 28
  year: 2016
  end-page: 47
  publication-title: Expert. Syst. Appl.
– volume: 42
  start-page: 939
  year: 2010
  end-page: 953
  publication-title: Struct. Multidisciplinary Optim.
– volume: 44
  start-page: 1823
  year: 2004
  end-page: 1828
  publication-title: J. Chem. Inf. Comput.
– volume: 16
  start-page: 906
  year: 2000
  end-page: 914
  publication-title: Bioinformatics
– volume: 6
  start-page: 28210
  year: 2011
  publication-title: PLoS One
– volume: 17
  start-page: 323
  year: 2016
  publication-title: BMC Bioinf.
– volume: 97
  start-page: 273
  year: 1997
  end-page: 324
  publication-title: Artif. Intell.
– volume: 398
  start-page: 96
  year: 2016
  end-page: 102
  publication-title: J. Theor. Biol.
– volume: 37
  start-page: 885
  year: 2009
  publication-title: Nucleic Acids Res.
– volume: 5
  start-page: 2189
  year: 2009
  end-page: 2202
  publication-title: Int. J. Innovative. Comput., Inf. Control
– volume: 72
  start-page: 417
  year: 2010
  end-page: 473
  publication-title: Stat. Soc. B.
– volume: 19
  start-page: 1921
  year: 2012
  end-page: 1935
  publication-title: Scientia Tranica
– year: 2002
– volume: 34
  start-page: 197
  year: 2015
  end-page: 215
  publication-title: Mol. Inf.
– volume: 11
  start-page: 19
  year: 2010
  end-page: 60
  publication-title: J. Mach. Learn. Res.
– volume: 20,
  start-page: 606
  year: 2016
  end-page: 626
  publication-title: IEEE Transact. Evolut. Comp.
– start-page: 36
  year: 2017
  publication-title: Mol. Inf.
– volume: 213
  start-page: 54
  year: 2016
  end-page: 65
  publication-title: Neurocomputing
– volume: 21
  start-page: 171
  year: 2005
  end-page: 178
  publication-title: Bioinformatics.
– volume: 34
  start-page: 215
  year: 2010
  end-page: 225
  publication-title: Comput. Biol. Chem.
– volume: 13
  start-page: 51
  year: 2002
  end-page: 60
  publication-title: Genome Informatics
– volume: 24
  start-page: 616
  year: 2011
  end-page: 624
  publication-title: Eng. Appl. Artif. Intel.
– volume: 39,
  start-page: 251
  year: 2007
  end-page: 262
  publication-title: Soft Computing in Industrial Application ASC,
– volume: 3
  start-page: 1969
  year: 2013
  end-page: 1977
  publication-title: Appl. Soft. Comput.
– volume: 185
  start-page: 153
  year: 2012
  end-page: 177
  publication-title: Inform. Sciences
– volume: 26
  start-page: 1424
  year: 2004
  end-page: 1437
  publication-title: IEEE. T. Pattern. Anal.
– volume: 1
  start-page: 131
  year: 1997
  end-page: 156
  publication-title: Intell. Data. Anal
– volume: 62
  start-page: 91
  year: 2016
  end-page: 103
  publication-title: Expert. Syst. Appl.
– ident: e_1_2_6_41_1
  doi: 10.1186/s12859-016-1201-8
– ident: e_1_2_6_19_1
  doi: 10.1111/j.1467-9868.2010.00740.x
– volume: 365
  start-page: 454
  year: 2005
  ident: e_1_2_6_3_1
  publication-title: The Lancet.
  doi: 10.1016/S0140-6736(05)17878-7
– ident: e_1_2_6_58_1
  doi: 10.1016/j.jtbi.2016.03.030
– ident: e_1_2_6_48_1
  doi: 10.1007/978-3-540-70706-6_24
– ident: e_1_2_6_8_1
  doi: 10.1016/j.compbiolchem.2010.07.002
– ident: e_1_2_6_35_1
  doi: 10.1109/CEC.2006.1688716
– ident: e_1_2_6_29_1
  doi: 10.1109/TEVC.2015.2504420
– ident: e_1_2_6_43_1
  doi: 10.1016/j.neucom.2016.09.078
– ident: e_1_2_6_38_1
  doi: 10.1016/j.patrec.2008.02.006
– ident: e_1_2_6_33_1
  doi: 10.1016/j.asoc.2013.09.018
– ident: e_1_2_6_47_1
  doi: 10.1007/s00158-010-0523-9
– volume: 13
  start-page: 51
  year: 2002
  ident: e_1_2_6_14_1
  publication-title: Genome Informatics
– ident: e_1_2_6_59_1
  doi: 10.1093/nar/gkn764
– start-page: 20
  year: 1995
  ident: e_1_2_6_55_1
  publication-title: Mach. Learn.
– start-page: 36
  year: 2017
  ident: e_1_2_6_23_1
  publication-title: Mol. Inf.
– ident: e_1_2_6_17_1
  doi: 10.1109/ICPR.1996.546751
– ident: e_1_2_6_26_1
  doi: 10.1166/asem.2012.1223
– ident: e_1_2_6_37_1
  doi: 10.1016/j.eswa.2016.02.042
– ident: e_1_2_6_40_1
  doi: 10.1109/TNB.2013.2294716
– ident: e_1_2_6_21_1
  doi: 10.1016/j.patrec.2005.12.018
– volume: 360
  start-page: 790
  year: 2009
  ident: e_1_2_6_2_1
  publication-title: J. Med.
– ident: e_1_2_6_25_1
  doi: 10.1016/j.scient.2012.10.034
– ident: e_1_2_6_15_1
– ident: e_1_2_6_39_1
  doi: 10.1002/minf.201400065
– ident: e_1_2_6_6_1
  doi: 10.1093/bib/bbn005
– ident: e_1_2_6_11_1
  doi: 10.1162/153244303322753616
– ident: e_1_2_6_42_1
  doi: 10.1109/ISCAS.2013.6571881
– volume: 367
  start-page: 487
  year: 2016
  ident: e_1_2_6_51_1
  publication-title: J. Inf. Sci.
– ident: e_1_2_6_50_1
  doi: 10.1016/j.asoc.2012.11.042
– volume: 5
  start-page: 207ra
  year: 2013
  ident: e_1_2_6_20_1
  publication-title: Sci. Transl. Med.
– ident: e_1_2_6_10_1
  doi: 10.1016/S1088-467X(97)00008-5
– ident: e_1_2_6_18_1
  doi: 10.1021/ci049875d
– ident: e_1_2_6_4_1
  doi: 10.1002/0471227587
– ident: e_1_2_6_53_1
  doi: 10.1109/MicroCom.2016.7522533
– volume: 11
  start-page: 19
  year: 2010
  ident: e_1_2_6_24_1
  publication-title: J. Mach. Learn. Res.
– ident: e_1_2_6_49_1
  doi: 10.1109/AICI.2009.438
– ident: e_1_2_6_32_1
  doi: 10.1109/TPAMI.2004.105
– ident: e_1_2_6_56_1
– ident: e_1_2_6_52_1
  doi: 10.1016/j.eswa.2016.06.004
– volume: 5
  start-page: 2189
  year: 2009
  ident: e_1_2_6_7_1
  publication-title: Int. J. Innovative. Comput., Inf. Control
– ident: e_1_2_6_34_1
  doi: 10.1016/j.compbiolchem.2007.09.005
– ident: e_1_2_6_36_1
  doi: 10.1109/TAP.2008.924684
– ident: e_1_2_6_45_1
  doi: 10.1023/A:1008202821328
– ident: e_1_2_6_30_1
  doi: 10.1016/j.eswa.2009.03.032
– ident: e_1_2_6_9_1
  doi: 10.1371/journal.pone.0028210
– ident: e_1_2_6_16_1
– ident: e_1_2_6_28_1
  doi: 10.1016/j.ins.2011.09.001
– ident: e_1_2_6_44_1
  doi: 10.1016/j.neucom.2016.03.101
– ident: e_1_2_6_46_1
– ident: e_1_2_6_31_1
  doi: 10.1007/s00500-007-0193-8
– ident: e_1_2_6_13_1
  doi: 10.1093/bioinformatics/16.10.906
– ident: e_1_2_6_12_1
  doi: 10.1016/S0004-3702(97)00043-X
– ident: e_1_2_6_22_1
  doi: 10.1073/pnas.091062498
– ident: e_1_2_6_57_1
– ident: e_1_2_6_54_1
– ident: e_1_2_6_5_1
  doi: 10.1093/bioinformatics/bth469
– ident: e_1_2_6_27_1
  doi: 10.1016/j.engappai.2010.12.002
SSID ssj0000326789
Score 2.2924356
Snippet The discovery of biomarkers from high‐dimensional data is a very challenging task in cancer diagnoses. On the one hand, biomarker discovery is the so‐called...
The discovery of biomarkers from high-dimensional data is a very challenging task in cancer diagnoses. On the one hand, biomarker discovery is the so-called...
SourceID proquest
pubmed
crossref
wiley
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage e1700081
SubjectTerms Adaptive control
Algorithms
Bioinformatics
Biomarker discovery
Biomarkers
Biomarkers, Tumor - analysis
Biomarkers, Tumor - genetics
Cancer
Computational Biology - methods
Cross-validation
Differential evolution
Evolution, Molecular
Evolutionary algorithms
Exploratory behavior
Feature selection
Heuristic methods
Humans
Optimization
Performance enhancement
Support Vector Machine
Support vector machines
Title An Improved Binary Differential Evolution Algorithm for Feature Selection in Molecular Signatures
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fminf.201700081
https://www.ncbi.nlm.nih.gov/pubmed/29106044
https://www.proquest.com/docview/2024881696
https://www.proquest.com/docview/1961038261
Volume 37
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVWIB
  databaseName: Wiley Online Library - Core collection (SURFmarket)
  issn: 1868-1743
  databaseCode: DR2
  dateStart: 20100101
  customDbUrl:
  isFulltext: true
  eissn: 1868-1751
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000326789
  providerName: Wiley-Blackwell
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1bT9swFD6aeOJl3LYRKJORpvLSQOI4lz52GxWbBKpWkHiLbMeBipKipkUqv55jO0kpaJrEpDwkOk7i2Ofy2bG_A_BNZV4oszhzZahTmAnG3UR2Y5eyHME9i7gvDNvnRXR2xX5fh9cvdvFbfohmwk1bhvHX2sC5KE-WpKH32AN6aVZswho6YT-IzJjqD20mWTwEJ7FJg6dZ4V2NvmviRo-erD5hNTC9QZur4NVEn_4G8LredtHJ3fF8Jo7l0ytKx__5sE34WEFT0rO6tAUfVLEN7YHltl50yOVyq1bZIW0yWLJeL3aA9wpiZyhURr6bXb7kZ5V9Bb3ImJw-VlpOeuObyXQ0u70niJiJBqHzqSJDk5FHy0cFOa-z9pLh6MaSj5af4Kp_evnjzK3yN7iSoaW7guY-CyUXgrEY-z7nGAxVrkdMnPo5Bs-YxxgtI57LhOORyFBS0Q24kLQbZsFnWCsmhdoFEgQKHSGCy1BpxkApIsU9FTAhEB75SeaAW3deKityc51jY5xaWmaa6lZNm1Z14Kgp_2BpPf5aslXrQlqZd4lSio7Pj7qRA4eNGA1T_23hhZrMyxRdmyafxxGqA1-sDjWvogjSIo8xB6jRhH_UIT3_ddFvrvbec9M-rON5YtcctWBtNp2rA4RTM_HVmMwzBH4WfA
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1bb9MwFD4a4wFeuIxbYAxPQuNl2RLHufSxsFXdpdXEOom3yHacUdGlqBek8es5x05SlQkhgZSXxE7i2Ofy2Tn-DsB7UwSxLtLC1zGlMFNC-pnupD4XJYJ7kchQWbbPYdK_Eqdf4iaakPbCOH6IdsGNNMPaa1JwWpA-XLGG3uAQUGxWav3aPbgvEpysEC76zNtllgDhSWoT4REvvE_4u6FuDPjh-iPWXdMdvLkOX63_6T0G1bTchZ18O1gu1IH--Rup43992hN4VKNT1nXi9BQ2TLUFexeO3vp2n41Wu7Xm-2yPXayIr2-fgexWzC1SmIJ9tBt92VGdgAUNyYQd_6gFnXUn19PZePH1hiFoZoRDlzPDLm1SHiofV2zQJO5ll-Nrxz86fw5XvePRp75fp3DwtUBl9xUvQxFrqZQQKQ5_KdEfmpImTZKHJfrPVKboMBNZ6kzikelYc9WJpNK8ExfRC9isppV5BSyKDNpCxJexIdJArRIjAxMJpRAhhVnhgd-MXq5rfnNKszHJHTMzz6lX87ZXPfjQ1v_umD3-WHO7EYa81vA5lnK0fWHSSTzYbYtRN-mHi6zMdDnP0boR_zxOUj146YSofRVHnJYEQnjArSj8pQ354GTYa89e_8tN7-BBfzQ4z89Phmdv4CFez1wI0jZsLmZL8xbR1ULtWP35BXi1Gp0
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1bT9swFD7aOgntBbbBWBhsRprghUDiOLfHjlLBBlXFRdpbZDsOqyhp1csk-PUc20mqbkKTNikviZ3Esc_ls3P8HYAvKvdCmce5K0Odwkww7iYyjV3KCgT3LOK-MGyfvej0hn37EdbRhHovjOWHaBbctGYYe60VXI3z4mjBGnqPQ6Bjs2Lj117CKxamiY7q61zSZpnFQ3gSm0R4mhfe1fi7pm706NHyI5Zd0x94cxm-Gv_TXQNRt9yGndwdzmfiUD7-Rur4X5_2BlYrdEraVpzewgtVvoO9vqW3fjgg14vdWtMDskf6C-Lrh3Xg7ZLYRQqVk69moy_pVAlY0JAMycmvStBJe3g7mgxmP-8Jgmaiceh8osiVScqjywcluagT95Krwa3lH51uwE335Pr41K1SOLiSobK7ghY-CyUXgrEYh7_g6A9VoSdNnPoF-s-Yx-gwI17IhOORyFBSkQZcSJqGefAeWuWoVB-ABIFCW4j4MlSaNFCKSHFPBUwIREh-kjvg1qOXyYrfXKfZGGaWmZlmulezplcd2G_qjy2zx7M1t2thyCoNn2IpRdvnR2nkwG5TjLqpf7jwUo3m0wytm-afx0mqA5tWiJpXUcRpkceYA9SIwl_akF2c9brN2da_3PQZVvqdbnZ-1vv-EV7j5cRGIG1DazaZqx0EVzPxyajPE_uTGiE
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=An+Improved+Binary+Differential+Evolution+Algorithm+for+Feature+Selection+in+Molecular+Signatures&rft.jtitle=Molecular+informatics&rft.au=Zhao%2C+X+S&rft.au=Bao%2C+L+L&rft.au=Ning%2C+Q&rft.au=Ji%2C+J+C&rft.date=2018-04-01&rft.issn=1868-1751&rft.eissn=1868-1751&rft.volume=37&rft.issue=4&rft.spage=e1700081&rft_id=info:doi/10.1002%2Fminf.201700081&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1868-1743&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1868-1743&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1868-1743&client=summon