An Improved Binary Differential Evolution Algorithm for Feature Selection in Molecular Signatures

The discovery of biomarkers from high‐dimensional data is a very challenging task in cancer diagnoses. On the one hand, biomarker discovery is the so‐called high‐dimensional small‐sample problem. On the other hand, these data are redundant and noisy. In recent years, biomarker discovery from high‐th...

Full description

Saved in:
Bibliographic Details
Published inMolecular informatics Vol. 37; no. 4; pp. e1700081 - n/a
Main Authors Zhao, X. S., Bao, L. L., Ning, Q., Ji, J. C., Zhao, X. W.
Format Journal Article
LanguageEnglish
Published Germany Wiley Subscription Services, Inc 01.04.2018
Subjects
Online AccessGet full text
ISSN1868-1743
1868-1751
1868-1751
DOI10.1002/minf.201700081

Cover

More Information
Summary:The discovery of biomarkers from high‐dimensional data is a very challenging task in cancer diagnoses. On the one hand, biomarker discovery is the so‐called high‐dimensional small‐sample problem. On the other hand, these data are redundant and noisy. In recent years, biomarker discovery from high‐throughput biological data has become an increasingly important emerging topic in the field of bioinformatics. In this study, we propose a binary differential evolution algorithm for feature selection. Firstly, we suggest using a two‐stage approach, where three filter methods including the Fisher score, T‐statistics, and Information gain are used to generate the feature pool for input to differential evolution (DE). Secondly, in order to improve the performance of differential evolution algorithm for feature selection, a new variant of binary DE called BDE is proposed. Three optimization strategies are incorporated into the BDE. The first strategy is the heuristic method in initial stage, the second one is the self‐adaptive parameter control, and the third one is the minimum change value to improve the exploration behaviour thus enhance the diversity. Finally, Support vector machine (SVM) is used as the classifier in 10 fold cross‐validation method. The experimental results of our proposed algorithm on some benchmark datasets demonstrate the effectiveness of our algorithm. In addition, the BDE forged in this study will be of great potential in feature selection problems.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ISSN:1868-1743
1868-1751
1868-1751
DOI:10.1002/minf.201700081