CETSA-MS unveils novel targets engaged by rigosertib to promote anti-tumor activity and inflammatory responses

Rigosertib (RGS) is a small-molecule inhibitor known to interfere with multiple disease signaling pathways. Despite its promise as an anti-cancer drug, the exact mechanisms of its action and rational for its observed clinical efficacy remain subjects of ongoing research. Our study aimed to elucidate...

Full description

Saved in:
Bibliographic Details
Published iniScience Vol. 28; no. 6; p. 112748
Main Authors Kechagioglou, Petros, Yurugi, Hajime, Dupont, Camille, Chernobrovkin, Alexey, Romero, Rossana, Harms, Gregory, Oster, Marie, Ciesek, Sandra, Tweedell, Rebecca, Kanneganti, Thirumala-Devi, Zimmer, Stefanie, Cosenza, Stephen, Fruchtman, Steven M., Rajalingam, Krishnaraj
Format Journal Article
LanguageEnglish
Published United States Elsevier Inc 20.06.2025
Elsevier
Subjects
Online AccessGet full text
ISSN2589-0042
2589-0042
DOI10.1016/j.isci.2025.112748

Cover

More Information
Summary:Rigosertib (RGS) is a small-molecule inhibitor known to interfere with multiple disease signaling pathways. Despite its promise as an anti-cancer drug, the exact mechanisms of its action and rational for its observed clinical efficacy remain subjects of ongoing research. Our study aimed to elucidate the mechanism of action of rigosertib and to identify its novel targets. We observed that rigosertib exerts its inhibitory effect on RAS-MAPK signaling through reactive oxygen species (ROS)-induced activation of c-Jun NH2-terminal kinase (JNK) signaling confirming previous studies. Using mass spectrometry-based cellular thermal shift assay (CETSA MS), we identified two potential novel targets, ERO1A and NQO2, which contribute to ROS-dependent JNK activation. Moreover, rigosertib induced caspase-1 activation and gasdermin cleavage leading to Nod-like receptor pyrin domain-containing 3 (NLRP3)-dependent inflammatory responses in human lung cancer organoids. Our results suggest that rigosertib may effectively inhibit RAS-MAPK signaling and reprogram the tumor immune environment, presenting the potential for a potent therapeutic strategy in cancer treatment. [Display omitted] •Rigosertib does not exhibit a high-affinity interaction with C-RAF RAS-binding domain•Rigosertib exerts its inhibitory effect through ROS-induced activation of JNK signaling•CETSA-MS identifies ERO1A and NQO2 as targets that contribute to ROS-dependent JNK activation•Rigosertib induces NLRP3-dependent inflammatory responses in human lung cancer organoids Pharmacology; Biological sciences; Cancer
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
Lead contact
ISSN:2589-0042
2589-0042
DOI:10.1016/j.isci.2025.112748