GhostFaceNets: Lightweight Face Recognition Model From Cheap Operations
The development of deep learning-based biometric models that can be deployed on devices with constrained memory and computational resources has proven to be a significant challenge. Previous approaches to this problem have not prioritized the reduction of feature map redundancy, but the introduction...
Saved in:
Published in | IEEE access Vol. 11; pp. 35429 - 35446 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
Piscataway
IEEE
2023
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Subjects | |
Online Access | Get full text |
ISSN | 2169-3536 2169-3536 |
DOI | 10.1109/ACCESS.2023.3266068 |
Cover
Summary: | The development of deep learning-based biometric models that can be deployed on devices with constrained memory and computational resources has proven to be a significant challenge. Previous approaches to this problem have not prioritized the reduction of feature map redundancy, but the introduction of Ghost modules represents a major innovation in this area. Ghost modules use a series of inexpensive linear transformations to extract additional feature maps from a set of intrinsic features, allowing for a more comprehensive representation of the underlying information. GhostNetV1 and GhostNetV2, both of which are based on Ghost modules, serve as the foundation for a group of lightweight face recognition models called GhostFaceNets. GhostNetV2 expands upon the original GhostNetV1 by adding an attention mechanism to capture long-range dependencies. Evaluation of GhostFaceNets using various benchmarks reveals that these models offer superior performance while requiring a computational complexity of approximately 60-275 MFLOPs. This is significantly lower than that of State-Of-The-Art (SOTA) big convolutional neural network (CNN) models, which can require hundreds of millions of FLOPs. GhostFaceNets trained with the ArcFace loss on the refined MS-Celeb-1M dataset demonstrate SOTA performance on all benchmarks. In comparison to previous SOTA mobile CNNs, GhostFaceNets greatly improve efficiency for face verification tasks. The GhostFaceNets code is available at: https://github.com/HamadYA/GhostFaceNets . |
---|---|
Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ISSN: | 2169-3536 2169-3536 |
DOI: | 10.1109/ACCESS.2023.3266068 |