GhostFaceNets: Lightweight Face Recognition Model From Cheap Operations

The development of deep learning-based biometric models that can be deployed on devices with constrained memory and computational resources has proven to be a significant challenge. Previous approaches to this problem have not prioritized the reduction of feature map redundancy, but the introduction...

Full description

Saved in:
Bibliographic Details
Published inIEEE access Vol. 11; pp. 35429 - 35446
Main Authors Alansari, Mohamad, Hay, Oussama Abdul, Javed, Sajid, Shoufan, Abdulhaid, Zweiri, Yahya, Werghi, Naoufel
Format Journal Article
LanguageEnglish
Published Piscataway IEEE 2023
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text
ISSN2169-3536
2169-3536
DOI10.1109/ACCESS.2023.3266068

Cover

More Information
Summary:The development of deep learning-based biometric models that can be deployed on devices with constrained memory and computational resources has proven to be a significant challenge. Previous approaches to this problem have not prioritized the reduction of feature map redundancy, but the introduction of Ghost modules represents a major innovation in this area. Ghost modules use a series of inexpensive linear transformations to extract additional feature maps from a set of intrinsic features, allowing for a more comprehensive representation of the underlying information. GhostNetV1 and GhostNetV2, both of which are based on Ghost modules, serve as the foundation for a group of lightweight face recognition models called GhostFaceNets. GhostNetV2 expands upon the original GhostNetV1 by adding an attention mechanism to capture long-range dependencies. Evaluation of GhostFaceNets using various benchmarks reveals that these models offer superior performance while requiring a computational complexity of approximately 60-275 MFLOPs. This is significantly lower than that of State-Of-The-Art (SOTA) big convolutional neural network (CNN) models, which can require hundreds of millions of FLOPs. GhostFaceNets trained with the ArcFace loss on the refined MS-Celeb-1M dataset demonstrate SOTA performance on all benchmarks. In comparison to previous SOTA mobile CNNs, GhostFaceNets greatly improve efficiency for face verification tasks. The GhostFaceNets code is available at: https://github.com/HamadYA/GhostFaceNets .
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:2169-3536
2169-3536
DOI:10.1109/ACCESS.2023.3266068