ACO-Based Scheme in Edge Learning NOMA Networks for Task-Oriented Communications

Conventional communications systems centered on data prioritize maximizing network throughput using Shannon's theory, which is primarily concerned with securely transmitting the data despite limited radio resources. However, in the realm of edge learning, these methods frequently fall short bec...

Full description

Saved in:
Bibliographic Details
Published inIEEE access Vol. 12; pp. 37692 - 37701
Main Authors Garcia, Carla E., Camana, Mario R., Koo, Insoo
Format Journal Article
LanguageEnglish
Published Piscataway IEEE 2024
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text
ISSN2169-3536
2169-3536
DOI10.1109/ACCESS.2024.3374635

Cover

More Information
Summary:Conventional communications systems centered on data prioritize maximizing network throughput using Shannon's theory, which is primarily concerned with securely transmitting the data despite limited radio resources. However, in the realm of edge learning, these methods frequently fall short because they depend on traditional source coding and channel coding principles, ultimately failing to improve learning performance. Consequently, it is crucial to transition from a data-centric viewpoint to a task-oriented communications approach in wireless system design. Therefore, in this paper, we propose efficient communications under a task-oriented principle by optimizing power allocation and edge learning-error prediction in an edge-aided non-orthogonal multiple access (NOMA) network. Furthermore, we propose a novel approach based on the ant colony optimization (ACO) algorithm to jointly minimize the learning error and optimize the power allocation variables. Moreover, we investigate four additional benchmark schemes (particle swarm optimization, quantum particle swarm optimization, cuckoo search, and butterfly optimization algorithms). Satisfactorily, simulation results validate the superiority of the ACO algorithm over the baseline schemes, achieving the best performance with less computation time. In addition, the integration of NOMA in the proposed task-oriented edge learning system obtains higher sum rate values than those achieved by conventional schemes.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:2169-3536
2169-3536
DOI:10.1109/ACCESS.2024.3374635