G2-ResNeXt: A Novel Model for ECG Signal Classification
Electrocardiograms (ECG) are the primary basis for the diagnosis of cardiovascular diseases. However, due to the large volume of patients' ECG data, manual diagnosis is time-consuming and laborious. Therefore, intelligent automatic ECG signal classification is an important technique for overcom...
Saved in:
Published in | IEEE access Vol. 11; pp. 34808 - 34820 |
---|---|
Main Authors | , , , , , , |
Format | Journal Article |
Language | English |
Published |
Piscataway
IEEE
2023
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Subjects | |
Online Access | Get full text |
ISSN | 2169-3536 2169-3536 |
DOI | 10.1109/ACCESS.2023.3265305 |
Cover
Abstract | Electrocardiograms (ECG) are the primary basis for the diagnosis of cardiovascular diseases. However, due to the large volume of patients' ECG data, manual diagnosis is time-consuming and laborious. Therefore, intelligent automatic ECG signal classification is an important technique for overcoming the shortage of medical resources. This paper proposes a novel model for inter-patient heartbeat classification, named G2-ResNeXt, which adds a two-fold grouping convolution (G2) to the original ResNeXt structure, as to achieve better automatic feature extraction and classification of ECG signals. Experiments, conducted on the MIT-BIH arrhythmia database, confirm that the proposed model outperforms all state-of-the-art models considered (except the GRNN model for one of the heartbeat classes), by achieving overall accuracy of 96.16%, and sensitivity and precision of 97.09% and 95.90%, respectively, for the ventricular ectopic heartbeats (VEB), and of 80.59% and 82.26%, respectively, for the supraventricular ectopic heartbeats (SVEB). |
---|---|
AbstractList | Electrocardiograms (ECG) are the primary basis for the diagnosis of cardiovascular diseases. However, due to the large volume of patients' ECG data, manual diagnosis is time-consuming and laborious. Therefore, intelligent automatic ECG signal classification is an important technique for overcoming the shortage of medical resources. This paper proposes a novel model for inter-patient heartbeat classification, named G2-ResNeXt, which adds a two-fold grouping convolution (G2) to the original ResNeXt structure, as to achieve better automatic feature extraction and classification of ECG signals. Experiments, conducted on the MIT-BIH arrhythmia database, confirm that the proposed model outperforms all state-of-the-art models considered (except the GRNN model for one of the heartbeat classes), by achieving overall accuracy of 96.16%, and sensitivity and precision of 97.09% and 95.90%, respectively, for the ventricular ectopic heartbeats (VEB), and of 80.59% and 82.26%, respectively, for the supraventricular ectopic heartbeats (SVEB). |
Author | Ji, Zhanlin Zhao, Li Ganchev, Ivan Xu, Hang Ji, Hongyu Hao, Shengnan Wang, Zhiwu |
Author_xml | – sequence: 1 givenname: Shengnan surname: Hao fullname: Hao, Shengnan organization: Department of Artificial Intelligence, North China University of Science and Technology, Tangshan, China – sequence: 2 givenname: Hang surname: Xu fullname: Xu, Hang organization: Department of Artificial Intelligence, North China University of Science and Technology, Tangshan, China – sequence: 3 givenname: Hongyu surname: Ji fullname: Ji, Hongyu organization: School of Biosciences, University of Sheffield, Sheffield, U.K – sequence: 4 givenname: Zhiwu orcidid: 0000-0003-3904-4513 surname: Wang fullname: Wang, Zhiwu organization: Department of Chemoradiotherapy, Tangshan People's Hospital, Hebei, China – sequence: 5 givenname: Li surname: Zhao fullname: Zhao, Li organization: Beijing National Research Center for Information Science and Technology, Institute for Precision Medicine, Tsinghua University, Beijing, China – sequence: 6 givenname: Zhanlin orcidid: 0000-0003-3527-3773 surname: Ji fullname: Ji, Zhanlin email: zhanlin.ji@gmail.com organization: Department of Artificial Intelligence, North China University of Science and Technology, Tangshan, China – sequence: 7 givenname: Ivan orcidid: 0000-0003-0535-7087 surname: Ganchev fullname: Ganchev, Ivan email: ivan.ganchev@ul.ie organization: Telecommunications Research Centre (TRC), University of Limerick, Limerick, Ireland |
BookMark | eNp9kMFKAzEQhoMoWGufQA8LnrcmmU12460stQpawfbgLWSzSUlZG01Wwbc3dRXEg3PIDJP5fmb-E3S48zuD0BnBU0KwuJzV9Xy1mlJMYQqUM8DsAI0o4SIHBvzwV32MJjFucYoqtVg5QuWC5o8mLs1Tf5XNsqV_N11279v0Wh-yeb3IVm6zU11WdypGZ51WvfO7U3RkVRfN5DuP0fp6vq5v8ruHxW09u8t1gUWfVyVuORdGG2xsZRvSMsa1tswCI5oVnBHGDLC0i8YVa2gBmJMSSiC6EgBjdDvItl5t5Utwzyp8SK-c_Gr4sJEq9E53RgrCeFEVpqGNKixWipSppFoBtbzCOGldDFovwb--mdjLrX8L6bQoafoXnApC05QYpnTwMQZjpXb918l9UK6TBMu963JwXe5dl9-uJxb-sD8b_0-dD5QzxvwisIAKA3wCHkOLVw |
CODEN | IAECCG |
CitedBy_id | crossref_primary_10_1109_ACCESS_2024_3518776 crossref_primary_10_3390_info15090511 crossref_primary_10_1080_10255842_2024_2332942 crossref_primary_10_1016_j_jocs_2025_102541 |
Cites_doi | 10.1038/srep41011 10.1007/978-3-319-10602-1_48 10.1109/CVPR.2016.90 10.1038/s41598-017-09837-3 10.1109/ICCV.2017.324 10.1109/EMBC.2019.8856706 10.1109/IEMBS.2007.4352993 10.1016/j.ins.2016.01.082 10.1109/ACCESS.2020.3004908 10.1109/TBME.2003.821031 10.1109/INCET51464.2021.9456394 10.1093/oxfordjournals.eurheartj.a060332 10.1109/ICAICT.2017.8687235 10.3390/a13040075 10.1109/83.136597 10.1109/SAMI54271.2022.9780670 10.1109/51.932724 10.22489/CinC.2017.066-138 10.1109/iCBEB.2012.128 10.1038/s41591-018-0268-3 10.1109/TBME.2016.2539421 10.1016/j.compbiomed.2018.03.016 10.1109/TBME.2015.2468589 10.1109/ICDATA52997.2021.00011 10.1109/CCCI49893.2020.9256674 10.3390/app9142921 10.1007/s11263-015-0816-y 10.1145/3065386 10.1109/TIPTEKNO.2018.8597094 10.1016/j.bspc.2018.03.003 10.1109/ICCV.2015.123 10.1016/j.bspc.2018.08.007 10.1109/LSP.2018.2822810 10.1109/JBHI.2019.2942938 10.32604/cmc.2020.09938 10.1162/neco.1997.9.8.1735 10.1109/ICASSP40776.2020.9054749 10.1109/CVPR.2017.634 10.1016/j.compbiomed.2017.08.022 10.1109/ICPR48806.2021.9413243 10.1109/ACCESS.2021.3098986 10.3390/e18080285 10.1109/ICAIIC.2019.8669000 10.1109/JSEN.2018.2877055 |
ContentType | Journal Article |
Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023 |
Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023 |
DBID | 97E ESBDL RIA RIE AAYXX CITATION 7SC 7SP 7SR 8BQ 8FD JG9 JQ2 L7M L~C L~D DOA |
DOI | 10.1109/ACCESS.2023.3265305 |
DatabaseName | IEEE All-Society Periodicals Package (ASPP) 2005–Present IEEE Xplore Open Access Journals IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Electronic Library (IEL) CrossRef Computer and Information Systems Abstracts Electronics & Communications Abstracts Engineered Materials Abstracts METADEX Technology Research Database Materials Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef Materials Research Database Engineered Materials Abstracts Technology Research Database Computer and Information Systems Abstracts – Academic Electronics & Communications Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Advanced Technologies Database with Aerospace METADEX Computer and Information Systems Abstracts Professional |
DatabaseTitleList | Materials Research Database |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: RIE name: IEEE Electronic Library (IEL) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 2169-3536 |
EndPage | 34820 |
ExternalDocumentID | oai_doaj_org_article_9156484eb2ba4f0aa17b2b2ca32f6800 10_1109_ACCESS_2023_3265305 10093803 |
Genre | orig-research |
GrantInformation_xml | – fundername: Tsinghua Precision Medicine Foundation grantid: 2022TS003 – fundername: National Key Research and Development Program of China grantid: 2017YFE0135700 funderid: 10.13039/501100012166 – fundername: Bulgarian National Science Fund (BNSF) grantid: KII-06-IIII-KIITAII/l (KP-06-IP-CHINA/1) funderid: 10.13039/501100003336 – fundername: Telecommunications Research Centre (TRC), University of Limerick, Ireland funderid: 10.13039/501100001635 |
GroupedDBID | 0R~ 4.4 5VS 6IK 97E AAJGR ABAZT ABVLG ACGFS ADBBV AGSQL ALMA_UNASSIGNED_HOLDINGS BCNDV BEFXN BFFAM BGNUA BKEBE BPEOZ EBS EJD ESBDL GROUPED_DOAJ IPLJI JAVBF KQ8 M43 M~E O9- OCL OK1 RIA RIE RNS AAYXX CITATION RIG 7SC 7SP 7SR 8BQ 8FD JG9 JQ2 L7M L~C L~D |
ID | FETCH-LOGICAL-c409t-870d669ece0ef8fb1d556ccf5f351c5465155e35957c085b24306173731c8933 |
IEDL.DBID | RIE |
ISSN | 2169-3536 |
IngestDate | Wed Aug 27 01:31:58 EDT 2025 Mon Jun 30 02:28:58 EDT 2025 Thu Apr 24 22:53:12 EDT 2025 Tue Jul 01 02:48:49 EDT 2025 Wed Aug 27 02:55:33 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Language | English |
License | https://creativecommons.org/licenses/by/4.0/legalcode |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c409t-870d669ece0ef8fb1d556ccf5f351c5465155e35957c085b24306173731c8933 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0003-3904-4513 0000-0003-3527-3773 0000-0003-0535-7087 |
OpenAccessLink | https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/document/10093803 |
PQID | 2800962912 |
PQPubID | 4845423 |
PageCount | 13 |
ParticipantIDs | crossref_citationtrail_10_1109_ACCESS_2023_3265305 proquest_journals_2800962912 doaj_primary_oai_doaj_org_article_9156484eb2ba4f0aa17b2b2ca32f6800 ieee_primary_10093803 crossref_primary_10_1109_ACCESS_2023_3265305 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 20230000 2023-00-00 20230101 2023-01-01 |
PublicationDateYYYYMMDD | 2023-01-01 |
PublicationDate_xml | – year: 2023 text: 20230000 |
PublicationDecade | 2020 |
PublicationPlace | Piscataway |
PublicationPlace_xml | – name: Piscataway |
PublicationTitle | IEEE access |
PublicationTitleAbbrev | Access |
PublicationYear | 2023 |
Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
References | ref13 ref12 ref15 gómez and (ref16) 2018; 7 ref14 ref52 ref11 ref10 ref17 ref19 misra (ref47) 2019 ref18 ref51 ref50 ref46 krizhevsky (ref23) 2012; 60 ref45 hua (ref41) 2020; 2020 ref42 ref44 ref43 ref49 ref7 ref9 (ref1) 2020 ref4 ref3 ref5 hermes (ref8) 1980 ref40 ref35 ref37 ref36 ref31 ref30 ref33 ref32 ref2 ref39 ref38 mark (ref6) 1987 ref26 ref25 ref20 ref22 ref21 nair (ref24) 2010 woo (ref48) 2018 ref28 ref27 ref29 awni (ref34) 2019; 25 |
References_xml | – ident: ref42 doi: 10.1038/srep41011 – ident: ref22 doi: 10.1007/978-3-319-10602-1_48 – start-page: 263 year: 1980 ident: ref8 article-title: Development, distribution, and use of the American heart association database for ventricular arrhythmia detector evaluation publication-title: Proc Comput Cardiol – ident: ref20 doi: 10.1109/CVPR.2016.90 – ident: ref12 doi: 10.1038/s41598-017-09837-3 – year: 2019 ident: ref47 article-title: Mish: A self regularized non-monotonic neural activation function publication-title: arXiv 1908 08681 – ident: ref50 doi: 10.1109/ICCV.2017.324 – ident: ref17 doi: 10.1109/EMBC.2019.8856706 – ident: ref4 doi: 10.1109/IEMBS.2007.4352993 – ident: ref30 doi: 10.1016/j.ins.2016.01.082 – ident: ref46 doi: 10.1109/ACCESS.2020.3004908 – ident: ref32 doi: 10.1109/TBME.2003.821031 – ident: ref27 doi: 10.1109/INCET51464.2021.9456394 – ident: ref9 doi: 10.1093/oxfordjournals.eurheartj.a060332 – ident: ref13 doi: 10.1109/ICAICT.2017.8687235 – ident: ref44 doi: 10.3390/a13040075 – ident: ref15 doi: 10.1109/83.136597 – ident: ref31 doi: 10.1109/SAMI54271.2022.9780670 – ident: ref7 doi: 10.1109/51.932724 – ident: ref40 doi: 10.22489/CinC.2017.066-138 – ident: ref14 doi: 10.1109/iCBEB.2012.128 – volume: 25 start-page: 65 year: 2019 ident: ref34 article-title: Cardiologist-level arrhythmia detection and classification in ambulatory electrocardiograms using a deep neural network publication-title: Nature Med doi: 10.1038/s41591-018-0268-3 – ident: ref36 doi: 10.1109/TBME.2016.2539421 – ident: ref39 doi: 10.1016/j.compbiomed.2018.03.016 – start-page: 3 year: 2018 ident: ref48 article-title: CBAM: Convolutional block attention module publication-title: Proc Eur Conf Comput Vis (ECCV) – ident: ref28 doi: 10.1109/TBME.2015.2468589 – ident: ref10 doi: 10.1109/ICDATA52997.2021.00011 – ident: ref51 doi: 10.1109/CCCI49893.2020.9256674 – ident: ref26 doi: 10.3390/app9142921 – ident: ref21 doi: 10.1007/s11263-015-0816-y – volume: 60 start-page: 84 year: 2012 ident: ref23 article-title: ImageNet classification with deep convolutional neural networks publication-title: Commun ACM doi: 10.1145/3065386 – ident: ref3 doi: 10.1109/TIPTEKNO.2018.8597094 – ident: ref2 doi: 10.1016/j.bspc.2018.03.003 – ident: ref52 doi: 10.1109/ICCV.2015.123 – ident: ref45 doi: 10.1016/j.bspc.2018.08.007 – ident: ref49 doi: 10.1109/LSP.2018.2822810 – start-page: 1 year: 1987 ident: ref6 article-title: AAMI-recommended practice: Testing and reporting performance results of ventricular arrhythmia detection algorithms publication-title: Proc Assoc Advance Med Instrum Arrhythmia Monit Subcommittee – ident: ref38 doi: 10.1109/JBHI.2019.2942938 – ident: ref19 doi: 10.32604/cmc.2020.09938 – ident: ref25 doi: 10.1162/neco.1997.9.8.1735 – ident: ref35 doi: 10.1109/ICASSP40776.2020.9054749 – ident: ref5 doi: 10.1109/CVPR.2017.634 – ident: ref29 doi: 10.1016/j.compbiomed.2017.08.022 – ident: ref11 doi: 10.1109/ICPR48806.2021.9413243 – volume: 7 start-page: 51 year: 2018 ident: ref16 article-title: Analysis of the ECG signal recognizing the QRS complex and P and T waves, using wavelet transform publication-title: American Journal of Engineering Research – year: 2020 ident: ref1 publication-title: The Top 10 Causes of Death – ident: ref37 doi: 10.1109/ACCESS.2021.3098986 – volume: 2020 start-page: 1 year: 2020 ident: ref41 article-title: A novel method for ECG signal classification via one-dimensional convolutional neural network publication-title: Multimedia Syst – start-page: 807 year: 2010 ident: ref24 article-title: Rectified linear units improve restricted Boltzmann machines publication-title: Proc 27th Int Conf Mach Learn – ident: ref43 doi: 10.3390/e18080285 – ident: ref18 doi: 10.1109/ICAIIC.2019.8669000 – ident: ref33 doi: 10.1109/JSEN.2018.2877055 |
SSID | ssj0000816957 |
Score | 2.325755 |
Snippet | Electrocardiograms (ECG) are the primary basis for the diagnosis of cardiovascular diseases. However, due to the large volume of patients' ECG data, manual... Electrocardiograms (ECG) are the primary basis for the diagnosis of cardiovascular diseases. However, due to the large volume of patients’ ECG data, manual... |
SourceID | doaj proquest crossref ieee |
SourceType | Open Website Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 34808 |
SubjectTerms | Arrhythmia Cardiovascular disease (CVD) Cardiovascular diseases convolutional block attention module (CBAM) Diagnosis ECG signal classification Electrocardiography Feature extraction Heart beat Heart rate variability MIT-BIH Pattern classification ResNeXt Signal classification |
SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1NS8NAEF2kJz2IHxWrVXLwaNr9TLLeaugHgj1ohd6WZDsrQmnFRn-_O0laAoJevIWwyWbfJLNvwu57hNzonDOIrAvB-jBIABvmniWHNEuUgxiiROLm5MdpNHmRD3M1b1h94ZqwSh64Aq6vUc0kkb4AzDPpaJax2B9ymwnuIs92MPtSTRvFVJmDExZpFdcyQ4zq_iBN_Yh66Bbe85RFCTSsa0xFpWJ_bbHyIy-Xk83oiBzWLDEYVE93TPZgdUIOGtqBpyQe8_AJNlOYF3fBIJiuv2AZoLPZMvA8NBim4-D57RXvUvpe4oqgMghtMhsNZ-kkrF0QQutrr8KnK7qIIg0WKLjE5WyhVGStU04oZisvcwW4vza2nj_lXAqkJSIWzHoyIs5Ia7VewTkJNOiFzTKpraAyWzjtIXIO_CzvgGnJOoRv8TC2VghHo4qlKSsFqk0FokEQTQ1ih9zuLnqvBDJ-b36PQO-aorp1ecLH3NQxN3_FvEPaGKZGf1SLhIoO6W7jZupPcWN4gmUa14xf_Effl2Qfx1P9hemSVvHxCVeelxT5dfkKfgMkI9il priority: 102 providerName: Directory of Open Access Journals |
Title | G2-ResNeXt: A Novel Model for ECG Signal Classification |
URI | https://ieeexplore.ieee.org/document/10093803 https://www.proquest.com/docview/2800962912 https://doaj.org/article/9156484eb2ba4f0aa17b2b2ca32f6800 |
Volume | 11 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1BT9swFLY2TuwwGCtagVU5cCRZ7NhJzK1ULWgSPQwm9WYlzjNCq1oEKQd-Pe85blWBNu0WRXbi-D3b33P8vo-xU10LDrl1MVg0gwSwcY0oOU6rUjkoIC8lJSdfT_Or3_LnTM1CsrrPhQEAf_gMErr0__KbpV3RVhmOcIy_S-L2_Ih-1iVrbTZUSEFCqyIwC_FU_xiORvgRCQmEJ4hSVEYadVurjyfpD6oq76Ziv75M9th03bLuWMmfZNXWiX15Q9r4303fZ58D0oyGnWt8YR9gccA-bfEPfmXFpYh_wdMUZu15NIymy2eYR6SONo8Qy0bj0WV0c39HT_HamXSqyBuyx24n49vRVRyUFGKL8VuLU17a5LkGCym40tW8USq31imXKW47PXQFlKNbWMRgtZAZQZusyLhFQJMdsp3FcgHfWKRBN7aqpLZZKqvGaexz5wCRggOuJe8zse5gYwPLOIldzI2PNlJtOqsYsooJVumzs02lh45k49_FL8hym6LEkO1vYI-bMOCMJhacUkIt6kq6tKp4gZfCVplwOaLkPuuRlbbe1xmoz07WjmDCcH4yoqRQT2gujv5S7ZjtUhO7zZkTttM-ruA7wpW2Hvgwf-Cd9RWkvuOs |
linkProvider | IEEE |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Nj9MwEB2h5QAc-FxEYYEcOJIQO3YScyvV7hbYzQGK1JuVOGOEqFrEphz49cw4blWBQNyiKE4cP9t543jeA3hhOimwdD5FRzAoRJd2xJLTvK21xwrLWnFy8mVTzj-pd0u9jMnqIRcGEcPmM8z4MPzL7zduy0tlNMIp_q5Z2_O6prCiHtO19ksq7CFhdBW1hURuXk1nM3qNjC3CM-IpumCXuoPvT5Dpj74qf0zG4QtzdgeaXd3GjSVfs-3QZe7nb7KN_135u3A7cs1kOnaOe3AN1_fh1oEC4QOozmX6Aa8aXA6vk2nSbH7gKmF_tFVCbDY5nZ0nH7985rsE90zeVxSgPIbF2eliNk-jl0LqKIIbaNLL-7I06DBHX_tO9FqXznntCy3c6IiukbN0K0csrJOqYHJTVIVwRGmKh3C03qzxESQGTe_aVhlX5KrtvaE29x6JK3gURokJyF0DWxd1xtnuYmVDvJEbO6JiGRUbUZnAy32hb6PMxr8vf8PI7S9ljexwglrcxiFnDevg1Ao72bXK520rKjqUri2kL4knT-CYUTp43gjQBE52HcHGAX1lZc3BnjRCPv5LsedwY764vLAXb5v3T-AmV3dcqjmBo-H7Fp8SeRm6Z6HL_gJtxOYK |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=G2-ResNeXt%3A+A+Novel+Model+for+ECG+Signal+Classification&rft.jtitle=IEEE+access&rft.au=Hao%2C+Shengnan&rft.au=Xu%2C+Hang&rft.au=Ji%2C+Hongyu&rft.au=Wang%2C+Zhiwu&rft.date=2023&rft.issn=2169-3536&rft.eissn=2169-3536&rft.volume=11&rft.spage=34808&rft.epage=34820&rft_id=info:doi/10.1109%2FACCESS.2023.3265305&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_ACCESS_2023_3265305 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2169-3536&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2169-3536&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2169-3536&client=summon |