G2-ResNeXt: A Novel Model for ECG Signal Classification

Electrocardiograms (ECG) are the primary basis for the diagnosis of cardiovascular diseases. However, due to the large volume of patients' ECG data, manual diagnosis is time-consuming and laborious. Therefore, intelligent automatic ECG signal classification is an important technique for overcom...

Full description

Saved in:
Bibliographic Details
Published inIEEE access Vol. 11; pp. 34808 - 34820
Main Authors Hao, Shengnan, Xu, Hang, Ji, Hongyu, Wang, Zhiwu, Zhao, Li, Ji, Zhanlin, Ganchev, Ivan
Format Journal Article
LanguageEnglish
Published Piscataway IEEE 2023
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text
ISSN2169-3536
2169-3536
DOI10.1109/ACCESS.2023.3265305

Cover

Abstract Electrocardiograms (ECG) are the primary basis for the diagnosis of cardiovascular diseases. However, due to the large volume of patients' ECG data, manual diagnosis is time-consuming and laborious. Therefore, intelligent automatic ECG signal classification is an important technique for overcoming the shortage of medical resources. This paper proposes a novel model for inter-patient heartbeat classification, named G2-ResNeXt, which adds a two-fold grouping convolution (G2) to the original ResNeXt structure, as to achieve better automatic feature extraction and classification of ECG signals. Experiments, conducted on the MIT-BIH arrhythmia database, confirm that the proposed model outperforms all state-of-the-art models considered (except the GRNN model for one of the heartbeat classes), by achieving overall accuracy of 96.16%, and sensitivity and precision of 97.09% and 95.90%, respectively, for the ventricular ectopic heartbeats (VEB), and of 80.59% and 82.26%, respectively, for the supraventricular ectopic heartbeats (SVEB).
AbstractList Electrocardiograms (ECG) are the primary basis for the diagnosis of cardiovascular diseases. However, due to the large volume of patients' ECG data, manual diagnosis is time-consuming and laborious. Therefore, intelligent automatic ECG signal classification is an important technique for overcoming the shortage of medical resources. This paper proposes a novel model for inter-patient heartbeat classification, named G2-ResNeXt, which adds a two-fold grouping convolution (G2) to the original ResNeXt structure, as to achieve better automatic feature extraction and classification of ECG signals. Experiments, conducted on the MIT-BIH arrhythmia database, confirm that the proposed model outperforms all state-of-the-art models considered (except the GRNN model for one of the heartbeat classes), by achieving overall accuracy of 96.16%, and sensitivity and precision of 97.09% and 95.90%, respectively, for the ventricular ectopic heartbeats (VEB), and of 80.59% and 82.26%, respectively, for the supraventricular ectopic heartbeats (SVEB).
Author Ji, Zhanlin
Zhao, Li
Ganchev, Ivan
Xu, Hang
Ji, Hongyu
Hao, Shengnan
Wang, Zhiwu
Author_xml – sequence: 1
  givenname: Shengnan
  surname: Hao
  fullname: Hao, Shengnan
  organization: Department of Artificial Intelligence, North China University of Science and Technology, Tangshan, China
– sequence: 2
  givenname: Hang
  surname: Xu
  fullname: Xu, Hang
  organization: Department of Artificial Intelligence, North China University of Science and Technology, Tangshan, China
– sequence: 3
  givenname: Hongyu
  surname: Ji
  fullname: Ji, Hongyu
  organization: School of Biosciences, University of Sheffield, Sheffield, U.K
– sequence: 4
  givenname: Zhiwu
  orcidid: 0000-0003-3904-4513
  surname: Wang
  fullname: Wang, Zhiwu
  organization: Department of Chemoradiotherapy, Tangshan People's Hospital, Hebei, China
– sequence: 5
  givenname: Li
  surname: Zhao
  fullname: Zhao, Li
  organization: Beijing National Research Center for Information Science and Technology, Institute for Precision Medicine, Tsinghua University, Beijing, China
– sequence: 6
  givenname: Zhanlin
  orcidid: 0000-0003-3527-3773
  surname: Ji
  fullname: Ji, Zhanlin
  email: zhanlin.ji@gmail.com
  organization: Department of Artificial Intelligence, North China University of Science and Technology, Tangshan, China
– sequence: 7
  givenname: Ivan
  orcidid: 0000-0003-0535-7087
  surname: Ganchev
  fullname: Ganchev, Ivan
  email: ivan.ganchev@ul.ie
  organization: Telecommunications Research Centre (TRC), University of Limerick, Limerick, Ireland
BookMark eNp9kMFKAzEQhoMoWGufQA8LnrcmmU12460stQpawfbgLWSzSUlZG01Wwbc3dRXEg3PIDJP5fmb-E3S48zuD0BnBU0KwuJzV9Xy1mlJMYQqUM8DsAI0o4SIHBvzwV32MJjFucYoqtVg5QuWC5o8mLs1Tf5XNsqV_N11279v0Wh-yeb3IVm6zU11WdypGZ51WvfO7U3RkVRfN5DuP0fp6vq5v8ruHxW09u8t1gUWfVyVuORdGG2xsZRvSMsa1tswCI5oVnBHGDLC0i8YVa2gBmJMSSiC6EgBjdDvItl5t5Utwzyp8SK-c_Gr4sJEq9E53RgrCeFEVpqGNKixWipSppFoBtbzCOGldDFovwb--mdjLrX8L6bQoafoXnApC05QYpnTwMQZjpXb918l9UK6TBMu963JwXe5dl9-uJxb-sD8b_0-dD5QzxvwisIAKA3wCHkOLVw
CODEN IAECCG
CitedBy_id crossref_primary_10_1109_ACCESS_2024_3518776
crossref_primary_10_3390_info15090511
crossref_primary_10_1080_10255842_2024_2332942
crossref_primary_10_1016_j_jocs_2025_102541
Cites_doi 10.1038/srep41011
10.1007/978-3-319-10602-1_48
10.1109/CVPR.2016.90
10.1038/s41598-017-09837-3
10.1109/ICCV.2017.324
10.1109/EMBC.2019.8856706
10.1109/IEMBS.2007.4352993
10.1016/j.ins.2016.01.082
10.1109/ACCESS.2020.3004908
10.1109/TBME.2003.821031
10.1109/INCET51464.2021.9456394
10.1093/oxfordjournals.eurheartj.a060332
10.1109/ICAICT.2017.8687235
10.3390/a13040075
10.1109/83.136597
10.1109/SAMI54271.2022.9780670
10.1109/51.932724
10.22489/CinC.2017.066-138
10.1109/iCBEB.2012.128
10.1038/s41591-018-0268-3
10.1109/TBME.2016.2539421
10.1016/j.compbiomed.2018.03.016
10.1109/TBME.2015.2468589
10.1109/ICDATA52997.2021.00011
10.1109/CCCI49893.2020.9256674
10.3390/app9142921
10.1007/s11263-015-0816-y
10.1145/3065386
10.1109/TIPTEKNO.2018.8597094
10.1016/j.bspc.2018.03.003
10.1109/ICCV.2015.123
10.1016/j.bspc.2018.08.007
10.1109/LSP.2018.2822810
10.1109/JBHI.2019.2942938
10.32604/cmc.2020.09938
10.1162/neco.1997.9.8.1735
10.1109/ICASSP40776.2020.9054749
10.1109/CVPR.2017.634
10.1016/j.compbiomed.2017.08.022
10.1109/ICPR48806.2021.9413243
10.1109/ACCESS.2021.3098986
10.3390/e18080285
10.1109/ICAIIC.2019.8669000
10.1109/JSEN.2018.2877055
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023
DBID 97E
ESBDL
RIA
RIE
AAYXX
CITATION
7SC
7SP
7SR
8BQ
8FD
JG9
JQ2
L7M
L~C
L~D
DOA
DOI 10.1109/ACCESS.2023.3265305
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE Xplore Open Access Journals
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
Computer and Information Systems Abstracts
Electronics & Communications Abstracts
Engineered Materials Abstracts
METADEX
Technology Research Database
Materials Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
Materials Research Database
Engineered Materials Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Advanced Technologies Database with Aerospace
METADEX
Computer and Information Systems Abstracts Professional
DatabaseTitleList
Materials Research Database

Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 2169-3536
EndPage 34820
ExternalDocumentID oai_doaj_org_article_9156484eb2ba4f0aa17b2b2ca32f6800
10_1109_ACCESS_2023_3265305
10093803
Genre orig-research
GrantInformation_xml – fundername: Tsinghua Precision Medicine Foundation
  grantid: 2022TS003
– fundername: National Key Research and Development Program of China
  grantid: 2017YFE0135700
  funderid: 10.13039/501100012166
– fundername: Bulgarian National Science Fund (BNSF)
  grantid: KII-06-IIII-KIITAII/l (KP-06-IP-CHINA/1)
  funderid: 10.13039/501100003336
– fundername: Telecommunications Research Centre (TRC), University of Limerick, Ireland
  funderid: 10.13039/501100001635
GroupedDBID 0R~
4.4
5VS
6IK
97E
AAJGR
ABAZT
ABVLG
ACGFS
ADBBV
AGSQL
ALMA_UNASSIGNED_HOLDINGS
BCNDV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
EBS
EJD
ESBDL
GROUPED_DOAJ
IPLJI
JAVBF
KQ8
M43
M~E
O9-
OCL
OK1
RIA
RIE
RNS
AAYXX
CITATION
RIG
7SC
7SP
7SR
8BQ
8FD
JG9
JQ2
L7M
L~C
L~D
ID FETCH-LOGICAL-c409t-870d669ece0ef8fb1d556ccf5f351c5465155e35957c085b24306173731c8933
IEDL.DBID RIE
ISSN 2169-3536
IngestDate Wed Aug 27 01:31:58 EDT 2025
Mon Jun 30 02:28:58 EDT 2025
Thu Apr 24 22:53:12 EDT 2025
Tue Jul 01 02:48:49 EDT 2025
Wed Aug 27 02:55:33 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Language English
License https://creativecommons.org/licenses/by/4.0/legalcode
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c409t-870d669ece0ef8fb1d556ccf5f351c5465155e35957c085b24306173731c8933
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0003-3904-4513
0000-0003-3527-3773
0000-0003-0535-7087
OpenAccessLink https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/document/10093803
PQID 2800962912
PQPubID 4845423
PageCount 13
ParticipantIDs crossref_citationtrail_10_1109_ACCESS_2023_3265305
proquest_journals_2800962912
doaj_primary_oai_doaj_org_article_9156484eb2ba4f0aa17b2b2ca32f6800
ieee_primary_10093803
crossref_primary_10_1109_ACCESS_2023_3265305
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20230000
2023-00-00
20230101
2023-01-01
PublicationDateYYYYMMDD 2023-01-01
PublicationDate_xml – year: 2023
  text: 20230000
PublicationDecade 2020
PublicationPlace Piscataway
PublicationPlace_xml – name: Piscataway
PublicationTitle IEEE access
PublicationTitleAbbrev Access
PublicationYear 2023
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref13
ref12
ref15
gómez and (ref16) 2018; 7
ref14
ref52
ref11
ref10
ref17
ref19
misra (ref47) 2019
ref18
ref51
ref50
ref46
krizhevsky (ref23) 2012; 60
ref45
hua (ref41) 2020; 2020
ref42
ref44
ref43
ref49
ref7
ref9
(ref1) 2020
ref4
ref3
ref5
hermes (ref8) 1980
ref40
ref35
ref37
ref36
ref31
ref30
ref33
ref32
ref2
ref39
ref38
mark (ref6) 1987
ref26
ref25
ref20
ref22
ref21
nair (ref24) 2010
woo (ref48) 2018
ref28
ref27
ref29
awni (ref34) 2019; 25
References_xml – ident: ref42
  doi: 10.1038/srep41011
– ident: ref22
  doi: 10.1007/978-3-319-10602-1_48
– start-page: 263
  year: 1980
  ident: ref8
  article-title: Development, distribution, and use of the American heart association database for ventricular arrhythmia detector evaluation
  publication-title: Proc Comput Cardiol
– ident: ref20
  doi: 10.1109/CVPR.2016.90
– ident: ref12
  doi: 10.1038/s41598-017-09837-3
– year: 2019
  ident: ref47
  article-title: Mish: A self regularized non-monotonic neural activation function
  publication-title: arXiv 1908 08681
– ident: ref50
  doi: 10.1109/ICCV.2017.324
– ident: ref17
  doi: 10.1109/EMBC.2019.8856706
– ident: ref4
  doi: 10.1109/IEMBS.2007.4352993
– ident: ref30
  doi: 10.1016/j.ins.2016.01.082
– ident: ref46
  doi: 10.1109/ACCESS.2020.3004908
– ident: ref32
  doi: 10.1109/TBME.2003.821031
– ident: ref27
  doi: 10.1109/INCET51464.2021.9456394
– ident: ref9
  doi: 10.1093/oxfordjournals.eurheartj.a060332
– ident: ref13
  doi: 10.1109/ICAICT.2017.8687235
– ident: ref44
  doi: 10.3390/a13040075
– ident: ref15
  doi: 10.1109/83.136597
– ident: ref31
  doi: 10.1109/SAMI54271.2022.9780670
– ident: ref7
  doi: 10.1109/51.932724
– ident: ref40
  doi: 10.22489/CinC.2017.066-138
– ident: ref14
  doi: 10.1109/iCBEB.2012.128
– volume: 25
  start-page: 65
  year: 2019
  ident: ref34
  article-title: Cardiologist-level arrhythmia detection and classification in ambulatory electrocardiograms using a deep neural network
  publication-title: Nature Med
  doi: 10.1038/s41591-018-0268-3
– ident: ref36
  doi: 10.1109/TBME.2016.2539421
– ident: ref39
  doi: 10.1016/j.compbiomed.2018.03.016
– start-page: 3
  year: 2018
  ident: ref48
  article-title: CBAM: Convolutional block attention module
  publication-title: Proc Eur Conf Comput Vis (ECCV)
– ident: ref28
  doi: 10.1109/TBME.2015.2468589
– ident: ref10
  doi: 10.1109/ICDATA52997.2021.00011
– ident: ref51
  doi: 10.1109/CCCI49893.2020.9256674
– ident: ref26
  doi: 10.3390/app9142921
– ident: ref21
  doi: 10.1007/s11263-015-0816-y
– volume: 60
  start-page: 84
  year: 2012
  ident: ref23
  article-title: ImageNet classification with deep convolutional neural networks
  publication-title: Commun ACM
  doi: 10.1145/3065386
– ident: ref3
  doi: 10.1109/TIPTEKNO.2018.8597094
– ident: ref2
  doi: 10.1016/j.bspc.2018.03.003
– ident: ref52
  doi: 10.1109/ICCV.2015.123
– ident: ref45
  doi: 10.1016/j.bspc.2018.08.007
– ident: ref49
  doi: 10.1109/LSP.2018.2822810
– start-page: 1
  year: 1987
  ident: ref6
  article-title: AAMI-recommended practice: Testing and reporting performance results of ventricular arrhythmia detection algorithms
  publication-title: Proc Assoc Advance Med Instrum Arrhythmia Monit Subcommittee
– ident: ref38
  doi: 10.1109/JBHI.2019.2942938
– ident: ref19
  doi: 10.32604/cmc.2020.09938
– ident: ref25
  doi: 10.1162/neco.1997.9.8.1735
– ident: ref35
  doi: 10.1109/ICASSP40776.2020.9054749
– ident: ref5
  doi: 10.1109/CVPR.2017.634
– ident: ref29
  doi: 10.1016/j.compbiomed.2017.08.022
– ident: ref11
  doi: 10.1109/ICPR48806.2021.9413243
– volume: 7
  start-page: 51
  year: 2018
  ident: ref16
  article-title: Analysis of the ECG signal recognizing the QRS complex and P and T waves, using wavelet transform
  publication-title: American Journal of Engineering Research
– year: 2020
  ident: ref1
  publication-title: The Top 10 Causes of Death
– ident: ref37
  doi: 10.1109/ACCESS.2021.3098986
– volume: 2020
  start-page: 1
  year: 2020
  ident: ref41
  article-title: A novel method for ECG signal classification via one-dimensional convolutional neural network
  publication-title: Multimedia Syst
– start-page: 807
  year: 2010
  ident: ref24
  article-title: Rectified linear units improve restricted Boltzmann machines
  publication-title: Proc 27th Int Conf Mach Learn
– ident: ref43
  doi: 10.3390/e18080285
– ident: ref18
  doi: 10.1109/ICAIIC.2019.8669000
– ident: ref33
  doi: 10.1109/JSEN.2018.2877055
SSID ssj0000816957
Score 2.325755
Snippet Electrocardiograms (ECG) are the primary basis for the diagnosis of cardiovascular diseases. However, due to the large volume of patients' ECG data, manual...
Electrocardiograms (ECG) are the primary basis for the diagnosis of cardiovascular diseases. However, due to the large volume of patients’ ECG data, manual...
SourceID doaj
proquest
crossref
ieee
SourceType Open Website
Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 34808
SubjectTerms Arrhythmia
Cardiovascular disease (CVD)
Cardiovascular diseases
convolutional block attention module (CBAM)
Diagnosis
ECG signal classification
Electrocardiography
Feature extraction
Heart beat
Heart rate variability
MIT-BIH
Pattern classification
ResNeXt
Signal classification
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1NS8NAEF2kJz2IHxWrVXLwaNr9TLLeaugHgj1ohd6WZDsrQmnFRn-_O0laAoJevIWwyWbfJLNvwu57hNzonDOIrAvB-jBIABvmniWHNEuUgxiiROLm5MdpNHmRD3M1b1h94ZqwSh64Aq6vUc0kkb4AzDPpaJax2B9ymwnuIs92MPtSTRvFVJmDExZpFdcyQ4zq_iBN_Yh66Bbe85RFCTSsa0xFpWJ_bbHyIy-Xk83oiBzWLDEYVE93TPZgdUIOGtqBpyQe8_AJNlOYF3fBIJiuv2AZoLPZMvA8NBim4-D57RXvUvpe4oqgMghtMhsNZ-kkrF0QQutrr8KnK7qIIg0WKLjE5WyhVGStU04oZisvcwW4vza2nj_lXAqkJSIWzHoyIs5Ia7VewTkJNOiFzTKpraAyWzjtIXIO_CzvgGnJOoRv8TC2VghHo4qlKSsFqk0FokEQTQ1ih9zuLnqvBDJ-b36PQO-aorp1ecLH3NQxN3_FvEPaGKZGf1SLhIoO6W7jZupPcWN4gmUa14xf_Effl2Qfx1P9hemSVvHxCVeelxT5dfkKfgMkI9il
  priority: 102
  providerName: Directory of Open Access Journals
Title G2-ResNeXt: A Novel Model for ECG Signal Classification
URI https://ieeexplore.ieee.org/document/10093803
https://www.proquest.com/docview/2800962912
https://doaj.org/article/9156484eb2ba4f0aa17b2b2ca32f6800
Volume 11
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1BT9swFLY2TuwwGCtagVU5cCRZ7NhJzK1ULWgSPQwm9WYlzjNCq1oEKQd-Pe85blWBNu0WRXbi-D3b33P8vo-xU10LDrl1MVg0gwSwcY0oOU6rUjkoIC8lJSdfT_Or3_LnTM1CsrrPhQEAf_gMErr0__KbpV3RVhmOcIy_S-L2_Ih-1iVrbTZUSEFCqyIwC_FU_xiORvgRCQmEJ4hSVEYadVurjyfpD6oq76Ziv75M9th03bLuWMmfZNXWiX15Q9r4303fZ58D0oyGnWt8YR9gccA-bfEPfmXFpYh_wdMUZu15NIymy2eYR6SONo8Qy0bj0WV0c39HT_HamXSqyBuyx24n49vRVRyUFGKL8VuLU17a5LkGCym40tW8USq31imXKW47PXQFlKNbWMRgtZAZQZusyLhFQJMdsp3FcgHfWKRBN7aqpLZZKqvGaexz5wCRggOuJe8zse5gYwPLOIldzI2PNlJtOqsYsooJVumzs02lh45k49_FL8hym6LEkO1vYI-bMOCMJhacUkIt6kq6tKp4gZfCVplwOaLkPuuRlbbe1xmoz07WjmDCcH4yoqRQT2gujv5S7ZjtUhO7zZkTttM-ruA7wpW2Hvgwf-Cd9RWkvuOs
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Nj9MwEB2h5QAc-FxEYYEcOJIQO3YScyvV7hbYzQGK1JuVOGOEqFrEphz49cw4blWBQNyiKE4cP9t543jeA3hhOimwdD5FRzAoRJd2xJLTvK21xwrLWnFy8mVTzj-pd0u9jMnqIRcGEcPmM8z4MPzL7zduy0tlNMIp_q5Z2_O6prCiHtO19ksq7CFhdBW1hURuXk1nM3qNjC3CM-IpumCXuoPvT5Dpj74qf0zG4QtzdgeaXd3GjSVfs-3QZe7nb7KN_135u3A7cs1kOnaOe3AN1_fh1oEC4QOozmX6Aa8aXA6vk2nSbH7gKmF_tFVCbDY5nZ0nH7985rsE90zeVxSgPIbF2eliNk-jl0LqKIIbaNLL-7I06DBHX_tO9FqXznntCy3c6IiukbN0K0csrJOqYHJTVIVwRGmKh3C03qzxESQGTe_aVhlX5KrtvaE29x6JK3gURokJyF0DWxd1xtnuYmVDvJEbO6JiGRUbUZnAy32hb6PMxr8vf8PI7S9ljexwglrcxiFnDevg1Ao72bXK520rKjqUri2kL4knT-CYUTp43gjQBE52HcHGAX1lZc3BnjRCPv5LsedwY764vLAXb5v3T-AmV3dcqjmBo-H7Fp8SeRm6Z6HL_gJtxOYK
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=G2-ResNeXt%3A+A+Novel+Model+for+ECG+Signal+Classification&rft.jtitle=IEEE+access&rft.au=Hao%2C+Shengnan&rft.au=Xu%2C+Hang&rft.au=Ji%2C+Hongyu&rft.au=Wang%2C+Zhiwu&rft.date=2023&rft.issn=2169-3536&rft.eissn=2169-3536&rft.volume=11&rft.spage=34808&rft.epage=34820&rft_id=info:doi/10.1109%2FACCESS.2023.3265305&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_ACCESS_2023_3265305
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2169-3536&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2169-3536&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2169-3536&client=summon