G2-ResNeXt: A Novel Model for ECG Signal Classification
Electrocardiograms (ECG) are the primary basis for the diagnosis of cardiovascular diseases. However, due to the large volume of patients' ECG data, manual diagnosis is time-consuming and laborious. Therefore, intelligent automatic ECG signal classification is an important technique for overcom...
Saved in:
Published in | IEEE access Vol. 11; pp. 34808 - 34820 |
---|---|
Main Authors | , , , , , , |
Format | Journal Article |
Language | English |
Published |
Piscataway
IEEE
2023
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Subjects | |
Online Access | Get full text |
ISSN | 2169-3536 2169-3536 |
DOI | 10.1109/ACCESS.2023.3265305 |
Cover
Summary: | Electrocardiograms (ECG) are the primary basis for the diagnosis of cardiovascular diseases. However, due to the large volume of patients' ECG data, manual diagnosis is time-consuming and laborious. Therefore, intelligent automatic ECG signal classification is an important technique for overcoming the shortage of medical resources. This paper proposes a novel model for inter-patient heartbeat classification, named G2-ResNeXt, which adds a two-fold grouping convolution (G2) to the original ResNeXt structure, as to achieve better automatic feature extraction and classification of ECG signals. Experiments, conducted on the MIT-BIH arrhythmia database, confirm that the proposed model outperforms all state-of-the-art models considered (except the GRNN model for one of the heartbeat classes), by achieving overall accuracy of 96.16%, and sensitivity and precision of 97.09% and 95.90%, respectively, for the ventricular ectopic heartbeats (VEB), and of 80.59% and 82.26%, respectively, for the supraventricular ectopic heartbeats (SVEB). |
---|---|
Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ISSN: | 2169-3536 2169-3536 |
DOI: | 10.1109/ACCESS.2023.3265305 |