Sediment consolidation settlement of Chengbei Sea area in the northern Huanghe River subaqueous delta, China
One of the most important factors controlling the morphology of the modem Huanghe (Yellow) River delta is consolidation settlement, which is impacted by fast deposition, high water content, and low density of seafloor sediment. Consolidation settlement of the Huanghe River subaqueous delta was studi...
Saved in:
| Published in | Chinese journal of oceanology and limnology Vol. 35; no. 3; pp. 693 - 703 |
|---|---|
| Main Author | |
| Format | Journal Article |
| Language | English |
| Published |
Heidelberg
Science Press
01.05.2017
Springer Nature B.V |
| Subjects | |
| Online Access | Get full text |
| ISSN | 0254-4059 2096-5508 1993-5005 2523-3521 |
| DOI | 10.1007/s00343-017-5365-5 |
Cover
| Summary: | One of the most important factors controlling the morphology of the modem Huanghe (Yellow) River delta is consolidation settlement, which is impacted by fast deposition, high water content, and low density of seafloor sediment. Consolidation settlement of the Huanghe River subaqueous delta was studied based on field data, laboratory experiments on 12 drill holes, and the one-dimensional consolidation theory. Results show that vertical sediment characteristics varied greatly in the rapidly forming sedimentary bodies of the modem Huanghe River subaqueous delta. Sediments in the upper parts of drill holes were coarser than those in the deeper parts, and other physical and mechanical properties changed accordingly. On the basis of the one-dimensional consolidation theory and drilling depth, the final consolidation settlement of drill holes was between 0.6 m and 2.8 m, and the mean settlement of unit depth was at 1.5-3.5 cm/m. It takes about 15-20 years for the consolidation degree to reach 90% and the average sedimentation rate within the overlying 50 m strata was at 5 cm/a to 12 cm/a. This study helps to forecast the final consolidation settlement and settlement rate of the modem Huanghe River subaqueous delta, which provides key geotechnical information for marine engineers. |
|---|---|
| Bibliography: | LIU Jie1, 2, FENG Xiuli 2, 3, LIU Xiao 2,4 (1 Key Laboratory of Marine Sedimentology and Environmental Geology, First Institute of Oceanography, State Oceanic Administration (SOA), Qingdao 266061, China ;2 Laboratory for Marine Geology, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266061, China ;3 Key Lab of Submarine Geoscienees and Prospecting Techniques, Ocean University of China, Qingdao 266100, China ;4 College of Environmental Science and Engineering, Ocean University of China, Qingdao 266100, China) mechanical properties; consolidation settlement; drill hole; modem Huanghe River subaqueous delta One of the most important factors controlling the morphology of the modem Huanghe (Yellow) River delta is consolidation settlement, which is impacted by fast deposition, high water content, and low density of seafloor sediment. Consolidation settlement of the Huanghe River subaqueous delta was studied based on field data, laboratory experiments on 12 drill holes, and the one-dimensional consolidation theory. Results show that vertical sediment characteristics varied greatly in the rapidly forming sedimentary bodies of the modem Huanghe River subaqueous delta. Sediments in the upper parts of drill holes were coarser than those in the deeper parts, and other physical and mechanical properties changed accordingly. On the basis of the one-dimensional consolidation theory and drilling depth, the final consolidation settlement of drill holes was between 0.6 m and 2.8 m, and the mean settlement of unit depth was at 1.5-3.5 cm/m. It takes about 15-20 years for the consolidation degree to reach 90% and the average sedimentation rate within the overlying 50 m strata was at 5 cm/a to 12 cm/a. This study helps to forecast the final consolidation settlement and settlement rate of the modem Huanghe River subaqueous delta, which provides key geotechnical information for marine engineers. 37-1150/P ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
| ISSN: | 0254-4059 2096-5508 1993-5005 2523-3521 |
| DOI: | 10.1007/s00343-017-5365-5 |