An Improved Spherical Vector and Truncated Mean Stabilization Based Bat Algorithm for UAV Path Planning

Unmanned aerial vehicles have a wide range of applications. An intelligent optimization algorithm based on the traditional bat algorithm (BA) is investigated in this paper for UAV flight path planning in a static complex environment. The primary goal of this work is to develop a safer flight path wh...

Full description

Saved in:
Bibliographic Details
Published inIEEE access Vol. 11; pp. 2396 - 2409
Main Authors Chen, Buqian, Yang, Jin, Zhang, Huizhen, Yang, Meng
Format Journal Article
LanguageEnglish
Published Piscataway IEEE 2023
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text
ISSN2169-3536
2169-3536
DOI10.1109/ACCESS.2023.3234057

Cover

More Information
Summary:Unmanned aerial vehicles have a wide range of applications. An intelligent optimization algorithm based on the traditional bat algorithm (BA) is investigated in this paper for UAV flight path planning in a static complex environment. The primary goal of this work is to develop a safer flight path while considering the feasibility of the UAV and the requirements for safe operation. This research proposes an improved spherical coordinate and truncated average stable strategy-based bat optimization algorithm (TMS-SBA). The algorithm uses the UAV's motion space to encode the operator, and by substituting a new bat for the worst of the old one after each iteration to increase population diversity, the algorithm can converge quickly in a complex environment while maintaining stable operation. In addition, the flight path is smoothly generated by using B-spline curves to make the planned path suitable for UAV. MATLAB simulation experiments show that, compared with other traditional swarm intelligent algorithms, TMS-SBA can successfully generate feasible and effective optimal solutions in complex environments and plan shorter, safer, and more accessible flight paths for UAV.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:2169-3536
2169-3536
DOI:10.1109/ACCESS.2023.3234057