A Novel Phase Congruency Based Algorithm for Online Data Reduction in Ambulatory EEG Systems
Real signals are often corrupted by noise with a power spectrum variable over time. In applications involving these signals, it is expected that dynamically estimating and correcting for this noise would increase the amount of useful information extracted from the signal. One such application is sca...
Saved in:
| Published in | IEEE transactions on biomedical engineering Vol. 58; no. 10; pp. 2825 - 2834 |
|---|---|
| Main Authors | , |
| Format | Journal Article |
| Language | English |
| Published |
New York, NY
IEEE
01.10.2011
Institute of Electrical and Electronics Engineers The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Subjects | |
| Online Access | Get full text |
| ISSN | 0018-9294 1558-2531 1558-2531 |
| DOI | 10.1109/TBME.2011.2160639 |
Cover
| Summary: | Real signals are often corrupted by noise with a power spectrum variable over time. In applications involving these signals, it is expected that dynamically estimating and correcting for this noise would increase the amount of useful information extracted from the signal. One such application is scalp EEG monitoring in epilepsy, where electrical activity generated by cranio-facial muscles obscure the measured brainwaves. This paper presents a data-selection algorithm based on phase congruency to identify interictal spikes from background EEG; together with a novel statistical method that allows a more comprehensive trade-off based quantitative comparison of two algorithms which have been tested at a fixed threshold in the same database. Here, traditional phase congruency has been modified to incorporate a dynamic estimate of muscle activity present in the input scalp EEG signal. The proposed algorithm achieves 50% data reduction whilst detecting more than 80% of interictal spikes. This represents a significant improvement over the state-of-the-art denoising method for phase congruency. |
|---|---|
| Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 ObjectType-Article-2 ObjectType-Conference-1 ObjectType-Feature-3 SourceType-Conference Papers & Proceedings-2 |
| ISSN: | 0018-9294 1558-2531 1558-2531 |
| DOI: | 10.1109/TBME.2011.2160639 |