A Novel Phase Congruency Based Algorithm for Online Data Reduction in Ambulatory EEG Systems

Real signals are often corrupted by noise with a power spectrum variable over time. In applications involving these signals, it is expected that dynamically estimating and correcting for this noise would increase the amount of useful information extracted from the signal. One such application is sca...

Full description

Saved in:
Bibliographic Details
Published inIEEE transactions on biomedical engineering Vol. 58; no. 10; pp. 2825 - 2834
Main Authors Logesparan, Lojini, Rodriguez-Villegas, Esther
Format Journal Article
LanguageEnglish
Published New York, NY IEEE 01.10.2011
Institute of Electrical and Electronics Engineers
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text
ISSN0018-9294
1558-2531
1558-2531
DOI10.1109/TBME.2011.2160639

Cover

More Information
Summary:Real signals are often corrupted by noise with a power spectrum variable over time. In applications involving these signals, it is expected that dynamically estimating and correcting for this noise would increase the amount of useful information extracted from the signal. One such application is scalp EEG monitoring in epilepsy, where electrical activity generated by cranio-facial muscles obscure the measured brainwaves. This paper presents a data-selection algorithm based on phase congruency to identify interictal spikes from background EEG; together with a novel statistical method that allows a more comprehensive trade-off based quantitative comparison of two algorithms which have been tested at a fixed threshold in the same database. Here, traditional phase congruency has been modified to incorporate a dynamic estimate of muscle activity present in the input scalp EEG signal. The proposed algorithm achieves 50% data reduction whilst detecting more than 80% of interictal spikes. This represents a significant improvement over the state-of-the-art denoising method for phase congruency.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ObjectType-Article-2
ObjectType-Conference-1
ObjectType-Feature-3
SourceType-Conference Papers & Proceedings-2
ISSN:0018-9294
1558-2531
1558-2531
DOI:10.1109/TBME.2011.2160639