Higher Order Statistics-Based Radial Basis Function Network for Evoked Potentials
In this study, higher order statistics-based radial basis function network (RBF) was proposed for evoked potentials (EPs). EPs provide useful information on diagnosis of the nervous system. They are time-varying signals typically buried in ongoing EEG, and have to be extracted by special methods. RB...
        Saved in:
      
    
          | Published in | IEEE transactions on biomedical engineering Vol. 56; no. 1; pp. 93 - 100 | 
|---|---|
| Main Authors | , , , | 
| Format | Journal Article | 
| Language | English | 
| Published | 
        United States
          IEEE
    
        01.01.2009
     The Institute of Electrical and Electronics Engineers, Inc. (IEEE)  | 
| Subjects | |
| Online Access | Get full text | 
| ISSN | 0018-9294 1558-2531 1558-2531  | 
| DOI | 10.1109/TBME.2008.2002124 | 
Cover
| Summary: | In this study, higher order statistics-based radial basis function network (RBF) was proposed for evoked potentials (EPs). EPs provide useful information on diagnosis of the nervous system. They are time-varying signals typically buried in ongoing EEG, and have to be extracted by special methods. RBF with least mean square (LMS) algorithm is an effective method to extract EPs. However, using LMS algorithm usually encounters gradient noise amplification problem, i.e., its performance is sensitive to the selection of step sizes and additional noise. Higher order statistics technique, which can effectively suppress Gaussian and symmetrically distributed non-Gaussian noises, was used to reduce gradient noise amplification problem on adaptation in this study. Simulations and human experiments were also carried out in this study. | 
|---|---|
| Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23  | 
| ISSN: | 0018-9294 1558-2531 1558-2531  | 
| DOI: | 10.1109/TBME.2008.2002124 |