Higher Order Statistics-Based Radial Basis Function Network for Evoked Potentials

In this study, higher order statistics-based radial basis function network (RBF) was proposed for evoked potentials (EPs). EPs provide useful information on diagnosis of the nervous system. They are time-varying signals typically buried in ongoing EEG, and have to be extracted by special methods. RB...

Full description

Saved in:
Bibliographic Details
Published inIEEE transactions on biomedical engineering Vol. 56; no. 1; pp. 93 - 100
Main Authors Lin $^$, Bor-Shyh, Lin, Bor-Shing, Chong, Fok-Ching, Lai, Feipei
Format Journal Article
LanguageEnglish
Published United States IEEE 01.01.2009
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text
ISSN0018-9294
1558-2531
1558-2531
DOI10.1109/TBME.2008.2002124

Cover

More Information
Summary:In this study, higher order statistics-based radial basis function network (RBF) was proposed for evoked potentials (EPs). EPs provide useful information on diagnosis of the nervous system. They are time-varying signals typically buried in ongoing EEG, and have to be extracted by special methods. RBF with least mean square (LMS) algorithm is an effective method to extract EPs. However, using LMS algorithm usually encounters gradient noise amplification problem, i.e., its performance is sensitive to the selection of step sizes and additional noise. Higher order statistics technique, which can effectively suppress Gaussian and symmetrically distributed non-Gaussian noises, was used to reduce gradient noise amplification problem on adaptation in this study. Simulations and human experiments were also carried out in this study.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ISSN:0018-9294
1558-2531
1558-2531
DOI:10.1109/TBME.2008.2002124