New modified algorithm: θ-turbulent flow of water-based optimization

The reactive power control of a power system is discussed under two types of variables: continuous variables (e.g., generator bus voltages) and discrete variables (e.g., transformer taps and the size of switched shunt capacitors). This paper proposes a novel and powerful algorithm, named turbulent f...

Full description

Saved in:
Bibliographic Details
Published inEnvironmental science and pollution research international Vol. 30; no. 28; pp. 71726 - 71740
Main Authors Naderipour, Amirreza, Davoudkhani, Iraj Faraji, Abdul-Malek, Zulkurnain
Format Journal Article
LanguageEnglish
Published Berlin/Heidelberg Springer Berlin Heidelberg 01.06.2023
Springer Nature B.V
Subjects
Online AccessGet full text
ISSN1614-7499
0944-1344
1614-7499
DOI10.1007/s11356-021-16072-x

Cover

More Information
Summary:The reactive power control of a power system is discussed under two types of variables: continuous variables (e.g., generator bus voltages) and discrete variables (e.g., transformer taps and the size of switched shunt capacitors). This paper proposes a novel and powerful algorithm, named turbulent flow of water-based optimization (TFWO) as well as a new improved version of this algorithm, called θ -TFWO, for optimal reactive power distribution (ORPD) to reduce losses. The proposed method is applied to two large-scale IEEE 57-bus systems. Furthermore, to demonstrate the competitive performance of the suggested algorithm, its performance was compared to that of several other algorithms, including biogeography-based optimization (BBO), social spider algorithm (SSA), and optics inspired optimization (OIO), in terms of solving the ORPD problem. The results confirmed the robustness and effectiveness of the proposed method as a powerful optimizer applicable to optimal reactive power distribution in power systems.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ISSN:1614-7499
0944-1344
1614-7499
DOI:10.1007/s11356-021-16072-x