Towards a Learning-Based Framework for Self-Driving Design of Networking Protocols

Networking protocols are designed through long-standing and hard-working human efforts. Machine Learning (ML)-based solutions for communication protocol design have been developed to avoid manual effort to adjust individual protocol parameters. While other proposed ML-based methods focus mainly on t...

Full description

Saved in:
Bibliographic Details
Published inIEEE access Vol. 9; pp. 34829 - 34844
Main Authors Pasandi, Hannaneh Barahouei, Nadeem, Tamer
Format Journal Article
LanguageEnglish
Published Piscataway IEEE 2021
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text
ISSN2169-3536
2169-3536
DOI10.1109/ACCESS.2021.3061729

Cover

Abstract Networking protocols are designed through long-standing and hard-working human efforts. Machine Learning (ML)-based solutions for communication protocol design have been developed to avoid manual effort to adjust individual protocol parameters. While other proposed ML-based methods focus mainly on tuning individual protocol parameters (e.g. contention window adjustment), our main contribution is to propose a new Deep Reinforcement Learning (DRL) framework to systematically design and evaluate networking protocols. We decouple the protocol into a set of parametric modules, each representing the main protocol functionality that is used as a DRL input to better understand and systematically analyze the optimization of generated protocols. As a case study, we introduce and evaluate DeepMAC a framework in which the MAC protocol is decoupled into a set of blocks across popular 802.11 WLANs (e.g. 802.11 a/b/g/n/ac). We are interested to see which blocks are selected by DeepMAC across different networking scenarios and whether DeepMAC is capable of adapting to network dynamics.
AbstractList Networking protocols are designed through long-standing and hard-working human efforts. Machine Learning (ML)-based solutions for communication protocol design have been developed to avoid manual effort to adjust individual protocol parameters. While other proposed ML-based methods focus mainly on tuning individual protocol parameters (e.g. contention window adjustment), our main contribution is to propose a new Deep Reinforcement Learning (DRL) framework to systematically design and evaluate networking protocols. We decouple the protocol into a set of parametric modules, each representing the main protocol functionality that is used as a DRL input to better understand and systematically analyze the optimization of generated protocols. As a case study, we introduce and evaluate DeepMAC a framework in which the MAC protocol is decoupled into a set of blocks across popular 802.11 WLANs (e.g. 802.11 a/b/g/n/ac). We are interested to see which blocks are selected by DeepMAC across different networking scenarios and whether DeepMAC is capable of adapting to network dynamics.
Author Nadeem, Tamer
Pasandi, Hannaneh Barahouei
Author_xml – sequence: 1
  givenname: Hannaneh Barahouei
  orcidid: 0000-0001-7311-7179
  surname: Pasandi
  fullname: Pasandi, Hannaneh Barahouei
  email: barahoueipash@vcu.edu
  organization: Department of Computer Science, Virginia Commonwealth University, Richmond, VA, USA
– sequence: 2
  givenname: Tamer
  orcidid: 0000-0003-3249-1978
  surname: Nadeem
  fullname: Nadeem, Tamer
  organization: Department of Computer Science, Virginia Commonwealth University, Richmond, VA, USA
BookMark eNqFkUtv1DAUhSNUJErpL-gmEusMfsSvZZm2UGkEiClr68a-HnlI48HOdNR_T4ZUFSoLvLnW0Tmf5XPfVidDGrCqLihZUErMh8vl8nq9XjDC6IITSRUzr6pTRqVpuODy5K_7m-q8lC2Zjp4koU6r73fpANmXGuoVQh7isGk-QkFf32S4x0PKP-uQcr3GPjRXOT5MhvoKS9wMdQr1FxyPlqP4LacxudSXd9XrAH3B86d5Vv24ub5bfm5WXz_dLi9XjWuJHptgQuuow5YJAeAEp74LTBPmuPLgTADRodRaARdICNPCS6-ckFoZwUDxs-p25voEW7vL8R7yo00Q7R8h5Y2FPEbXowWjvBG-c464liPtKCes61BzL6infmK1M2s_7ODxAH3_DKTEHmu24ByWYo8126eap9j7ObbL6dcey2i3aZ-H6deWCSIUUS3Xk4vPLpdTKRnDP-x5hS_Z5kXKxRHGmIYxQ-z_k72YsxERn18zXFIpCf8NyqOpzQ
CODEN IAECCG
CitedBy_id crossref_primary_10_1109_MNET_2023_3321538
crossref_primary_10_1109_LCOMM_2023_3326267
crossref_primary_10_1109_TMLCN_2024_3368367
crossref_primary_10_4018_IJIIT_335523
crossref_primary_10_1109_COMST_2022_3179242
crossref_primary_10_1109_ACCESS_2021_3129990
crossref_primary_10_1109_LNET_2024_3503289
Cites_doi 10.1109/JSAC.2019.2933891
10.1109/CISS.2017.7926071
10.1109/ICAIIC48513.2020.9065254
10.1109/TMC.2010.28
10.1109/PerComWorkshops48775.2020.9156196
10.1186/s13634-016-0348-9
10.1109/ALLERTON.2016.7852251
10.1109/ISWCS.2012.6328420
10.1145/3232755.3232783
10.1109/DYSPAN.2005.1542668
10.1016/j.neucom.2016.01.031
10.1145/3301293.3302374
10.1109/ICC.2017.7996587
10.1007/s11276-016-1402-0
10.1109/COMST.2018.2846401
10.1109/WCNC.2018.8377397
10.3758/CABN.9.4.343
10.1109/TNNLS.2017.2773458
10.1109/ACCESS.2020.2995398
10.1109/JIOT.2018.2872441
10.1016/j.ins.2019.08.045
10.1109/TCCN.2017.2758370
10.1109/ACCESS.2018.2877686
10.1109/TWC.2018.2879433
10.1109/ACCESS.2019.2913776
10.1109/WIOPT.2007.4480049
10.1109/JSAC.2019.2904358
10.23919/WIOPT.2017.7959912
10.1109/COMST.2019.2924243
10.1007/BF00992698
10.1145/3152434.3152441
10.1109/GLOBECOM38437.2019.9013445
10.1109/ICAIIC.2019.8669008
10.1145/2534169.2486020
10.1109/ACCESS.2018.2886216
10.1109/JPROC.2007.898862
10.1145/3229607.3229610
10.1109/JSAC.2019.2904329
10.1109/TMC.2015.2499180
10.1109/TSMCA.2005.846390
10.1109/TCCN.2018.2809722
10.1109/INFCOM.2012.6195488
10.1109/TWC.2019.2912754
10.1145/3152434.3152446
10.1038/nature14236
10.1080/01969720590897224
10.1109/GlobalSIP.2018.8646405
10.1109/MWC.2016.1600317WC
10.1109/TCOMM.2019.2946553
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021
DBID 97E
ESBDL
RIA
RIE
AAYXX
CITATION
7SC
7SP
7SR
8BQ
8FD
JG9
JQ2
L7M
L~C
L~D
ADTOC
UNPAY
DOA
DOI 10.1109/ACCESS.2021.3061729
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE Xplore Open Access Journals
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
Computer and Information Systems Abstracts
Electronics & Communications Abstracts
Engineered Materials Abstracts
METADEX
Technology Research Database
Materials Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Unpaywall for CDI: Periodical Content
Unpaywall
Openly Available Collection - DOAJ
DatabaseTitle CrossRef
Materials Research Database
Engineered Materials Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Advanced Technologies Database with Aerospace
METADEX
Computer and Information Systems Abstracts Professional
DatabaseTitleList Materials Research Database


Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
– sequence: 3
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 2169-3536
EndPage 34844
ExternalDocumentID oai_doaj_org_article_a97d95dbcc0c43e1b1302bbe83d51d1d
10.1109/access.2021.3061729
10_1109_ACCESS_2021_3061729
9361660
Genre orig-research
GrantInformation_xml – fundername: U.S. National Science Foundation
  grantid: CNS-1764185
  funderid: 10.13039/100000001
GroupedDBID 0R~
4.4
5VS
6IK
97E
AAJGR
ABAZT
ABVLG
ACGFS
ADBBV
AGSQL
ALMA_UNASSIGNED_HOLDINGS
BCNDV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
EBS
EJD
ESBDL
GROUPED_DOAJ
IPLJI
JAVBF
KQ8
M43
M~E
O9-
OCL
OK1
RIA
RIE
RNS
AAYXX
CITATION
7SC
7SP
7SR
8BQ
8FD
JG9
JQ2
L7M
L~C
L~D
ADTOC
UNPAY
ID FETCH-LOGICAL-c408t-f9f4c1ce4255aac531dbf2802c37dac9fa5be6887a35e00285d6d7c5687952a73
IEDL.DBID DOA
ISSN 2169-3536
IngestDate Fri Oct 03 12:52:32 EDT 2025
Wed Oct 29 12:05:13 EDT 2025
Mon Jun 30 02:40:41 EDT 2025
Thu Apr 24 22:58:07 EDT 2025
Wed Oct 01 04:43:56 EDT 2025
Wed Aug 27 02:47:30 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Language English
License https://creativecommons.org/licenses/by/4.0/legalcode
cc-by
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c408t-f9f4c1ce4255aac531dbf2802c37dac9fa5be6887a35e00285d6d7c5687952a73
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0003-3249-1978
0000-0001-7311-7179
OpenAccessLink https://doaj.org/article/a97d95dbcc0c43e1b1302bbe83d51d1d
PQID 2505707438
PQPubID 4845423
PageCount 16
ParticipantIDs doaj_primary_oai_doaj_org_article_a97d95dbcc0c43e1b1302bbe83d51d1d
proquest_journals_2505707438
ieee_primary_9361660
unpaywall_primary_10_1109_access_2021_3061729
crossref_primary_10_1109_ACCESS_2021_3061729
crossref_citationtrail_10_1109_ACCESS_2021_3061729
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20210000
2021-00-00
20210101
2021-01-01
PublicationDateYYYYMMDD 2021-01-01
PublicationDate_xml – year: 2021
  text: 20210000
PublicationDecade 2020
PublicationPlace Piscataway
PublicationPlace_xml – name: Piscataway
PublicationTitle IEEE access
PublicationTitleAbbrev Access
PublicationYear 2021
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref57
ref13
ref12
ref59
ref15
ref58
ref53
ref52
yves (ref67) 2008
ref55
hu (ref22) 2020
ref17
ref19
hu (ref23) 2010; 9
jay (ref26) 2018
ref51
ref46
ref48
ref47
egorov (ref18) 2016
ref42
ref41
ref44
ref43
lowe (ref34) 2019
(ref1) 2018
mnih (ref39) 2013
ref49
agrawal (ref2) 2016
ref7
ref9
ref4
ref3
ref6
ref5
gwon (ref21) 2014
dong (ref16) 2018
carrie macgillivray (ref10) 0
ref40
packer (ref45) 2018
cai (ref8) 2018
ref35
(ref24) 2016
tsitsiklis (ref56) 1997
ref37
ref36
ref31
ref30
ruffy (ref50) 2018
ref32
challita (ref11) 2017
ref38
winstein (ref61) 2013; 43
ref71
ref70
lowe (ref33) 2019
ye (ref64) 2002; 3
ref68
ref69
ref20
ref63
ref66
ref65
sutton (ref54) 2018
ref28
ref27
ref29
ref60
ref62
de alfaro (ref14) 2020
jaques (ref25) 2019
References_xml – ident: ref4
  doi: 10.1109/JSAC.2019.2933891
– ident: ref20
  doi: 10.1109/CISS.2017.7926071
– ident: ref47
  doi: 10.1109/ICAIIC48513.2020.9065254
– volume: 9
  start-page: 796
  year: 2010
  ident: ref23
  article-title: QELAR: A machine-learning-based adaptive routing protocol for energy-efficient and lifetime-extended underwater sensor networks
  publication-title: IEEE Trans Mobile Comput
  doi: 10.1109/TMC.2010.28
– ident: ref48
  doi: 10.1109/PerComWorkshops48775.2020.9156196
– ident: ref31
  doi: 10.1186/s13634-016-0348-9
– volume: 3
  start-page: 1567
  year: 2002
  ident: ref64
  article-title: An energy-efficient MAC protocol for wireless sensor networks
  publication-title: Proc 21st Annu Joint Conf IEEE Comput Commun Societies (INFOCOM)
– start-page: 73
  year: 2014
  ident: ref21
  article-title: Inferring origin flow patterns in Wi-Fi with deep learning
  publication-title: Proc 11th Int Conf Autonomic Comput (ICAC)
– ident: ref41
  doi: 10.1109/ALLERTON.2016.7852251
– year: 2018
  ident: ref1
  publication-title: DARPA SC2 Website
– ident: ref13
  doi: 10.1109/ISWCS.2012.6328420
– ident: ref5
  doi: 10.1145/3232755.3232783
– ident: ref15
  doi: 10.1109/DYSPAN.2005.1542668
– ident: ref30
  doi: 10.1016/j.neucom.2016.01.031
– ident: ref27
  doi: 10.1145/3301293.3302374
– ident: ref32
  doi: 10.1109/ICC.2017.7996587
– ident: ref7
  doi: 10.1007/s11276-016-1402-0
– ident: ref37
  doi: 10.1109/COMST.2018.2846401
– ident: ref58
  doi: 10.1109/WCNC.2018.8377397
– year: 2013
  ident: ref39
  article-title: Playing atari with deep reinforcement learning
  publication-title: arXiv 1312 5602
– ident: ref35
  doi: 10.3758/CABN.9.4.343
– ident: ref29
  doi: 10.1109/TNNLS.2017.2773458
– ident: ref63
  doi: 10.1109/ACCESS.2020.2995398
– year: 2018
  ident: ref50
  article-title: Iroko: A framework to prototype reinforcement learning for data center traffic control
  publication-title: arXiv 1812 09975
– year: 2016
  ident: ref18
  article-title: Multi-agent deep reinforcement learning
  publication-title: Convolutional neural networks for visual recognition
– ident: ref12
  doi: 10.1109/JIOT.2018.2872441
– start-page: 693
  year: 2019
  ident: ref33
  article-title: On the pitfalls of measuring emergent communication
  publication-title: Proc 18th Int Conf Auto Agents Multiagent Syst
– ident: ref69
  doi: 10.1016/j.ins.2019.08.045
– ident: ref44
  doi: 10.1109/TCCN.2017.2758370
– year: 2018
  ident: ref45
  article-title: Assessing generalization in deep reinforcement learning
– year: 2018
  ident: ref54
  publication-title: Reinforcement Learning An Introduction
– ident: ref65
  doi: 10.1109/ACCESS.2018.2877686
– year: 2008
  ident: ref67
  article-title: Machine learning based congestion control in wireless sensor networks
– ident: ref42
  doi: 10.1109/TWC.2018.2879433
– ident: ref36
  doi: 10.1109/ACCESS.2019.2913776
– ident: ref43
  doi: 10.1109/WIOPT.2007.4480049
– start-page: 1075
  year: 1997
  ident: ref56
  article-title: Analysis of temporal-diffference learning with function approximation
  publication-title: Proc Adv Neural Inf Process Syst
– start-page: 262
  year: 2020
  ident: ref14
  article-title: Approaching fair collision-free channel access with slotted aloha using collaborative policy-based reinforcement learning
  publication-title: Proc IFIP Netw Conf (Netw )
– ident: ref62
  doi: 10.1109/JSAC.2019.2904358
– ident: ref6
  doi: 10.23919/WIOPT.2017.7959912
– ident: ref53
  doi: 10.1109/COMST.2019.2924243
– ident: ref60
  doi: 10.1007/BF00992698
– ident: ref57
  doi: 10.1145/3152434.3152441
– start-page: 3040
  year: 2019
  ident: ref25
  article-title: Social influence as intrinsic motivation for multi-agent deep reinforcement learning
  publication-title: Proc ICML
– ident: ref9
  doi: 10.1109/GLOBECOM38437.2019.9013445
– ident: ref46
  doi: 10.1109/ICAIIC.2019.8669008
– volume: 43
  start-page: 123
  year: 2013
  ident: ref61
  article-title: Tcasa ex maChina: Computer-generated congestion control
  publication-title: Proc ACM SIGCOMM Comput Commun Rev
  doi: 10.1145/2534169.2486020
– year: 2016
  ident: ref24
  publication-title: IEEE Computer Society LAN MAN Standards Committee and others Part 11 Wireless LAN Medium Access Control (MAC) and Physical Layer (PHY) Specifications
– ident: ref3
  doi: 10.1109/ACCESS.2018.2886216
– ident: ref38
  doi: 10.1109/JPROC.2007.898862
– ident: ref19
  doi: 10.1145/3229607.3229610
– ident: ref66
  doi: 10.1109/JSAC.2019.2904329
– year: 2016
  ident: ref2
  article-title: Xavier: A reinforcement-learning approach to TCP congestion control
– year: 0
  ident: ref10
  publication-title: Worldwide Global Datasphere IoT Device and Data Forecast 2019-2023
– ident: ref70
  doi: 10.1109/TMC.2015.2499180
– start-page: 343
  year: 2018
  ident: ref16
  article-title: $PCC$ vivace: Online-learning congestion control
  publication-title: Proc 15th USENIX Symp Netw Syst Design Implement (NSDI)
– ident: ref17
  doi: 10.1109/TSMCA.2005.846390
– ident: ref59
  doi: 10.1109/TCCN.2018.2809722
– ident: ref55
  doi: 10.1109/INFCOM.2012.6195488
– year: 2019
  ident: ref34
  article-title: On the interaction between supervision and self-play in emergent communication
  publication-title: Proc Int Conf Learn Represent
– year: 2020
  ident: ref22
  article-title: 'Other-play' for zero-shot coordination
  publication-title: arXiv 2003 02979
– start-page: 24
  year: 2018
  ident: ref8
  article-title: Fractional backoff algorithm for the next generation WLAN
  publication-title: Proc 1st Int Conf Wireless Internet
– ident: ref68
  doi: 10.1109/TWC.2019.2912754
– year: 2018
  ident: ref26
  article-title: Internet congestion control via deep reinforcement learning
  publication-title: arXiv 1810 03259
– ident: ref51
  doi: 10.1145/3152434.3152446
– ident: ref40
  doi: 10.1038/nature14236
– ident: ref52
  doi: 10.1080/01969720590897224
– ident: ref71
  doi: 10.1109/GlobalSIP.2018.8646405
– ident: ref28
  doi: 10.1109/MWC.2016.1600317WC
– ident: ref49
  doi: 10.1109/TCOMM.2019.2946553
– year: 2017
  ident: ref11
  article-title: Proactive resource management for LTE in unlicensed spectrum: A deep learning perspective
  publication-title: arXiv 1702 07031
SSID ssj0000816957
Score 2.360866
Snippet Networking protocols are designed through long-standing and hard-working human efforts. Machine Learning (ML)-based solutions for communication protocol design...
SourceID doaj
unpaywall
proquest
crossref
ieee
SourceType Open Website
Open Access Repository
Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 34829
SubjectTerms Approximation algorithms
Communication protocols
deep learning
IEEE 802.11 Standard
Machine learning
machine-generated algorithm
Media Access Protocol
Optimization
Parameters
Protocol
protocol design
Protocols
Reinforcement learning
Throughput
Tuning
SummonAdditionalLinks – databaseName: IEEE Electronic Library (IEL)
  dbid: RIE
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwELZKL8CBV0EsFOQDx3obJ_Hr2G5ZVUitELRSb5afCLHaVLtZIfj1eBxv1AWEuEWWndj6ZuKZ8fgbhN5JGqs2VIy0nFvSJh-CWMsr4lqXjPtgqPRwd_jikp9ftx9u2M0eOhrvwoQQcvJZmMJjPsv3ndtAqOxYNZxynhz0e0Ly4a7WGE-BAhKKiUIsRCt1fDKbpTUkF7Cm0ybv1Gpn88kc_aWoyo59eX-zvDU_vpvF4s5WM3-MLraTHDJMvk03vZ26n7_xN_7vKp6gR8XmxCeDkDxFe2H5DD28w0R4gD5d5fTZNTa4MK5-Iadpg_N4vs3ewsm8xZ_DIpKz1VcIQ-CznP2Bu4gvh2RyaPy46vouSdf6Obqev7-anZNSbiEBU8meRBVbR11IWsyMcUk5vY21rGrXCG-ciobZwNNPyTQsgK_GPPfCMQ71ymsjmhdof9ktw0uELWMyWNFKCvx6Mo3zIhkesRWWixDlBNVbHLQrXORQEmOhs09SKT2ApwE8XcCboKNx0O1AxfHv7qcA8NgVeLRzQwJDF7XURgmvmLfOVa5tArVwjmttkI1n1FM_QQcA4PiSgt0EHW7FRRedX2swJgVYZGl5ZBShP6ZqciHMnam--vtXXqMH0GsI-Byi_X61CW-SCdTbt1n2fwFf8AFk
  priority: 102
  providerName: IEEE
– databaseName: Unpaywall
  dbid: UNPAY
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3dixMxEA_aexAf_DrFnqfkwUez3exukt3HXs9yCJZDr3A-hXzK4dKWdounf72TbFquCoK-LSFZEmYm85tk8huE3tbU55XLGak416SCGIJozXNiKgPg3ila2_B2-OOMX8yrD9fsOh24xbcwzrmYfOay8Bnv8m9ceytGvAjkac2oKWkBbnEEoTinnOfZyvr76IgzwOIDdDSfXY6_hIpylDekjHeTrxKx5kjFGoQQFBY0K6Pvbg7cUWTtT2VWDhDng-1ipX58V217x_lMHyO5m3afc_It23Y6Mz9_Y3T8_3U9QY8SLsXjXpGeontu8Qw9vMNWeIw-XcUU2w1WOLGyfiVn4AQtnu4yvDBAYPzZtZ6cr2_CUQU-jxkieOnxrE84D42X62W3BA3cPEfz6furyQVJJRlAeHndEd_4ylDjwNKZUgYM2Gpf1HlhSmGVabxi2nHYuFTJXIjnmOVWGMZDTfNCifIFGiyWC_cSYc1Y7bSoaho4-GoYZwWAE18JzYXz9RAVO8lIk_jKQ9mMVsa4JW_keDIBJZVBnDKJc4je7QeterqOv3c_CyLfdw1c27EBxCOT6UrVCNswq43JTVU6qsNdr9auLi2jltohOg4i3f8kyW-ITncKJNO-sJEBcIqA2mB5ZK9Uf0y1V9SDqZ78Y_9TNOjWW_caIFOn3yS7-AXCZQ96
  priority: 102
  providerName: Unpaywall
Title Towards a Learning-Based Framework for Self-Driving Design of Networking Protocols
URI https://ieeexplore.ieee.org/document/9361660
https://www.proquest.com/docview/2505707438
https://ieeexplore.ieee.org/ielx7/6287639/9312710/09361660.pdf
https://doaj.org/article/a97d95dbcc0c43e1b1302bbe83d51d1d
UnpaywallVersion publishedVersion
Volume 9
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAFT
  databaseName: Open Access Digital Library
  customDbUrl:
  eissn: 2169-3536
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000816957
  issn: 2169-3536
  databaseCode: KQ8
  dateStart: 20130101
  isFulltext: true
  titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html
  providerName: Colorado Alliance of Research Libraries
– providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 2169-3536
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000816957
  issn: 2169-3536
  databaseCode: DOA
  dateStart: 20130101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 2169-3536
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000816957
  issn: 2169-3536
  databaseCode: M~E
  dateStart: 20130101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LaxsxEBYhPaQ9hLZJqdPU6NBj1Ei7eh4dpyYUakIaQ3ISepaCsYPtEPLvI2llY1NoL70KrRjNjKRvtKNvAPgiScQ0YIYo5xbRFEMgazlGjroE7oMh0ue3wz_G_GpCv9-xu61SXzknrKMH7hR3bpTwinnrHHa0DcTmP23WBtl6RjzxeffFUm0FU2UPloQrJirNEMHqfDAcphmlgLAhX9tybqudo6gw9tcSKzto8-Bx9mCen8x0unXwjN6Cw4oY4aCT9B3YC7P34M0Wj-ARuLktya9LaGDlS_2FLtLx5OFonXsFEziFP8M0osvF73yJAC9L7gacRzjuUsFz4_Vivpon31geg8no2-3wCtViCUmtWK5QVJE64kJag8wYl5aWt7GRuHGt8MapaJgNPG0ppmUhR1rMcy8c47naeGNE-wHsz-az8BFAy5gMVlBJMjueTN95kWBDpMJyEaLsgWatN-0qk3guaDHVJaLASnfK1lnZuiq7B842Hz10RBp_736RDbLpmlmwS0PyDV19Q__LN3rgKJtzM4hqOeEc98Dp2ry6rtilzlBQZDyVpoc2Jv9DVFPKWO6IevI_RP0EXucxu8udU7C_WjyGzwnurGy_eHa_vEzsg1eT8fXg_gUf2_uj
linkProvider Directory of Open Access Journals
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LbxMxELaqcigceBVEoIAPHLvpetfPY5sSBWgiBKnUm-UnQkTZKtmoKr8e2-usGkCI28qyd219M-uZ8fgbAN5x5EvsSlJgSnWBgw9RaE3LwmATjHunELfx7vB0RieX-OMVudoDx_1dGOdcSj5zw_iYzvJtYzYxVHYiaoooDQ76PYIxJt1trT6iEktICMIytRAqxcnpaBRWEZzACg3rtFeLne0nsfTnsio7FubBZnmtbm_UYnFnsxk_AtPtNLsckx_DTauH5udvDI7_u47H4GG2OuFpJyZPwJ5bPgUP7nARHoIv85RAu4YKZs7Vb8VZ2OIsHG_zt2AwcOFXt_DF-ep7DETA85T_ARsPZ106eWz8vGraJsjX-hm4HL-fjyZFLrgQoCl5W3jhsUHGBT0mSpmgnlb7ipeVqZlVRnhFtKPht6Rq4qK3Riy1zBAaK5ZXitXPwf6yWboXAGpCuNMMcxQZ9ngYZ1kwPTxmmjLn-QBUWxykyWzksSjGQiavpBSyA09G8GQGbwCO-0HXHRnHv7ufRYD7rpFJOzUEMGRWTKkEs4JYbUxpcO2Qjie5WjteW4IssgNwGAHsX5KxG4CjrbjIrPVrGc1JFm2ysLyiF6E_pqpSKcydqb78-1fegoPJfHohLz7MPr0C9-OILvxzBPbb1ca9DgZRq98kPfgF-boEsQ
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3dixMxEA_aexAf_DrFnqfkwUez3exukt3HXs9yCJZDr3A-hXzK4dKWdounf72TbFquCoK-LSFZEmYm85tk8huE3tbU55XLGak416SCGIJozXNiKgPg3ila2_B2-OOMX8yrD9fsOh24xbcwzrmYfOay8Bnv8m9ceytGvAjkac2oKWkBbnEEoTinnOfZyvr76IgzwOIDdDSfXY6_hIpylDekjHeTrxKx5kjFGoQQFBY0K6Pvbg7cUWTtT2VWDhDng-1ipX58V217x_lMHyO5m3afc_It23Y6Mz9_Y3T8_3U9QY8SLsXjXpGeontu8Qw9vMNWeIw-XcUU2w1WOLGyfiVn4AQtnu4yvDBAYPzZtZ6cr2_CUQU-jxkieOnxrE84D42X62W3BA3cPEfz6furyQVJJRlAeHndEd_4ylDjwNKZUgYM2Gpf1HlhSmGVabxi2nHYuFTJXIjnmOVWGMZDTfNCifIFGiyWC_cSYc1Y7bSoaho4-GoYZwWAE18JzYXz9RAVO8lIk_jKQ9mMVsa4JW_keDIBJZVBnDKJc4je7QeterqOv3c_CyLfdw1c27EBxCOT6UrVCNswq43JTVU6qsNdr9auLi2jltohOg4i3f8kyW-ITncKJNO-sJEBcIqA2mB5ZK9Uf0y1V9SDqZ78Y_9TNOjWW_caIFOn3yS7-AXCZQ96
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Towards+a+Learning-Based+Framework+for+Self-Driving+Design+of+Networking+Protocols&rft.jtitle=IEEE+access&rft.au=Pasandi%2C+Hannaneh+Barahouei&rft.au=Nadeem%2C+Tamer&rft.date=2021&rft.pub=IEEE&rft.eissn=2169-3536&rft.volume=9&rft.spage=34829&rft.epage=34844&rft_id=info:doi/10.1109%2FACCESS.2021.3061729&rft.externalDocID=9361660
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2169-3536&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2169-3536&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2169-3536&client=summon