Towards a Learning-Based Framework for Self-Driving Design of Networking Protocols

Networking protocols are designed through long-standing and hard-working human efforts. Machine Learning (ML)-based solutions for communication protocol design have been developed to avoid manual effort to adjust individual protocol parameters. While other proposed ML-based methods focus mainly on t...

Full description

Saved in:
Bibliographic Details
Published inIEEE access Vol. 9; pp. 34829 - 34844
Main Authors Pasandi, Hannaneh Barahouei, Nadeem, Tamer
Format Journal Article
LanguageEnglish
Published Piscataway IEEE 2021
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text
ISSN2169-3536
2169-3536
DOI10.1109/ACCESS.2021.3061729

Cover

More Information
Summary:Networking protocols are designed through long-standing and hard-working human efforts. Machine Learning (ML)-based solutions for communication protocol design have been developed to avoid manual effort to adjust individual protocol parameters. While other proposed ML-based methods focus mainly on tuning individual protocol parameters (e.g. contention window adjustment), our main contribution is to propose a new Deep Reinforcement Learning (DRL) framework to systematically design and evaluate networking protocols. We decouple the protocol into a set of parametric modules, each representing the main protocol functionality that is used as a DRL input to better understand and systematically analyze the optimization of generated protocols. As a case study, we introduce and evaluate DeepMAC a framework in which the MAC protocol is decoupled into a set of blocks across popular 802.11 WLANs (e.g. 802.11 a/b/g/n/ac). We are interested to see which blocks are selected by DeepMAC across different networking scenarios and whether DeepMAC is capable of adapting to network dynamics.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:2169-3536
2169-3536
DOI:10.1109/ACCESS.2021.3061729