Deep Learning Approach for Detecting Malicious Activities Over Encrypted Secure Channels

Nowadays, most cyber attackers exploit secure communication channels to hide malicious activities and imitate the behaviors of a legitimate user. These attacks over a secure channel make networked systems more vulnerable to new threats and increase the possibility of significant damage to other end...

Full description

Saved in:
Bibliographic Details
Published inIEEE access Vol. 9; pp. 39229 - 39244
Main Authors Yang, Jiwon, Lim, Hyuk
Format Journal Article
LanguageEnglish
Published Piscataway IEEE 2021
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text
ISSN2169-3536
2169-3536
DOI10.1109/ACCESS.2021.3064561

Cover

More Information
Summary:Nowadays, most cyber attackers exploit secure communication channels to hide malicious activities and imitate the behaviors of a legitimate user. These attacks over a secure channel make networked systems more vulnerable to new threats and increase the possibility of significant damage to other end users. Traditional TCP/IP-level traffic inspections do not suffice in investigating a secure sockets layer (SSL) conversation because the SSL conversation data is encrypted by a public key system and the SSL uses its own data unit of an SSL record. In this paper, we propose a novel malicious SSL traffic detection method, which reassembles SSL records from captured IP packets and inspects the characteristics of SSL records using a deep learning method. After an SSL record is reassembled from a single or multiple IP packets, the proposed method extracts unencrypted contents of the reassembled record and generates a sequence of unencrypted data from successive SSL records for deep learning-based classification. The sequences of SSL records are encoded using a long short-term memory autoencoder, and then an encoded feature map is generated for each SSL flow. These feature maps are forwarded to the convolutional neural network-based classifier to determine whether the SSL flow is malicious or not. The experiment shows that our proposed approach has a great separability between benign and malicious traffic flows on an encrypted SSL channel.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:2169-3536
2169-3536
DOI:10.1109/ACCESS.2021.3064561