Fennec Fox Optimization: A New Nature-Inspired Optimization Algorithm

This paper proposes a new nature-based metaheuristic algorithm called Fennec Fox Optimization (FFA), mimicking two natural behaviors of the animal Fennec Fox in nature. Concretely, Fennec's digging ability and escape strategy from wild predators were the fundamental inspiration for the proposed...

Full description

Saved in:
Bibliographic Details
Published inIEEE access Vol. 10; p. 1
Main Authors Trojovska, Eva, Dehghani, Mohammad, Trojovsky, Pavel
Format Journal Article
LanguageEnglish
Published Piscataway IEEE 2022
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text
ISSN2169-3536
2169-3536
DOI10.1109/ACCESS.2022.3197745

Cover

More Information
Summary:This paper proposes a new nature-based metaheuristic algorithm called Fennec Fox Optimization (FFA), mimicking two natural behaviors of the animal Fennec Fox in nature. Concretely, Fennec's digging ability and escape strategy from wild predators were the fundamental inspiration for the proposed FFA. The mathematical model of FFA is presented in two phases based on imitating these two behaviors. First, the efficiency of FFA was evaluated in the optimization of sixty-eight standard benchmark functions and four engineering design problems. Second, FFA performance is challenged against eight well-known optimization algorithms. The optimization results show that FFA perfectly balances exploration and exploitation in searching for the global optimum. Hence, FFA can provide suitable solutions to optimization problems. The comparison of results indicates the superiority of FFA in most objective functions over competitor algorithms in providing the optimal solution.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:2169-3536
2169-3536
DOI:10.1109/ACCESS.2022.3197745