Series DC Arc Fault Detection Using Machine Learning Algorithms

The wide variety of arc faults induced by different load types renders residential series arc fault detection complicated and challenging. Series dc arc faults could cause fire accidents and adversely affect power systems if not promptly detected. However, in practical power systems, they are diffic...

Full description

Saved in:
Bibliographic Details
Published inIEEE access Vol. 9; pp. 133346 - 133364
Main Authors Dang, Hoang-Long, Kim, Jaechang, Kwak, Sangshin, Choi, Seungdeog
Format Journal Article
LanguageEnglish
Published Piscataway IEEE 2021
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text
ISSN2169-3536
2169-3536
DOI10.1109/ACCESS.2021.3115512

Cover

More Information
Summary:The wide variety of arc faults induced by different load types renders residential series arc fault detection complicated and challenging. Series dc arc faults could cause fire accidents and adversely affect power systems if not promptly detected. However, in practical power systems, they are difficult to detect because of a low arc current, absence of a zero-crossing period, and various abnormal behavior based on different types of power loads and controllers. In particular, conventional protection fuses may not be activated when they occur. Undetected arc faults could cause false operation of power systems and potentially lead to damage to property and human casualties. Therefore, it is imperative to develop a detection system for series arc faults in DC systems for the reliable and efficient operation of such systems. In this study, several typical loads, especially nonlinear and complex loads such as power electronic loads, were chosen and analyzed, and five time-domain parameters of the current-average value, median value, variance value, RMS value, and distance of the maximum and minimum values-were chosen for arc fault detection. Various machine learning algorithms were used for arc fault detection and their detection accuracies were compared.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:2169-3536
2169-3536
DOI:10.1109/ACCESS.2021.3115512