Effects of Inaccurate Identification of Interictal Epileptiform Discharges in Concurrent EEG-fMRI

Concurrent continuous EEG-fMRI is a novel multimodal technique that is finding its way into clinical practice in epilepsy. EEG timeseries are used to identify the timing of interictal epileptiform discharges (IEDs) which is then included in a GLM analysis in fMRI to localize the epileptic onset zone...

Full description

Saved in:
Bibliographic Details
Published inJournal of physics. Conference series Vol. 931; no. 1; pp. 12042 - 12045
Main Authors Gkiatis, K, Bromis, K, Kakkos, I, Karanasiou, I S, Matsopoulos, G K, Garganis, K
Format Journal Article
LanguageEnglish
Published Bristol IOP Publishing 01.11.2017
Subjects
Online AccessGet full text
ISSN1742-6588
1742-6596
1742-6596
DOI10.1088/1742-6596/931/1/012042

Cover

More Information
Summary:Concurrent continuous EEG-fMRI is a novel multimodal technique that is finding its way into clinical practice in epilepsy. EEG timeseries are used to identify the timing of interictal epileptiform discharges (IEDs) which is then included in a GLM analysis in fMRI to localize the epileptic onset zone. Nevertheless, there are still some concerns about its reliability concerning BOLD changes correlated with IEDs. Even though IEDs are identified by an experienced neurologist-epiliptologist, the reliability and concordance of the mark-ups is depending on many factors including the level of fatigue, the amount of time that he spent or, in some cases, even the screen that is being used for the display of timeseries. This investigation is aiming to unravel the effect of misidentification or inaccuracy in the mark-ups of IEDs in the fMRI statistical parametric maps. Concurrent EEG-fMRI was conducted in six subjects with various types of epilepsy. IEDs were identified by an experienced neurologist-epiliptologist. Analysis of EEG was performed with EEGLAB and analysis of fMRI was conducted in FSL. Preliminary results revealed lower statistical significance for missing events or larger period of IEDs than the actual ones and the introduction of false positives and false negatives in statistical parametric maps when random events were included in the GLM on top of the IEDs. Our results suggest that mark-ups in EEG for simultaneous EEG-fMRI should be done with caution from an experienced and restful neurologist as it affects the fMRI results in various and unpredicted ways.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:1742-6588
1742-6596
1742-6596
DOI:10.1088/1742-6596/931/1/012042