Space-Time Adaptive Processing by Employing Structure-Aware Two-Level Block Sparsity

Traditional radar space-time adaptive processing (STAP) cannot efficiently suppress heterogeneous clutter because of a small number of independent and identically distributed training snapshots. In the article, we propose a new STAP approach exploiting structure-aware two-level block sparsity (STBS)...

Full description

Saved in:
Bibliographic Details
Published inIEEE journal of selected topics in applied earth observations and remote sensing Vol. 14; pp. 6386 - 6397
Main Authors Jiang, Zhizhuo, Wang, Xueqian, Li, Gang, Zhang, Xiao-Ping, He, You
Format Journal Article
LanguageEnglish
Published Piscataway IEEE 2021
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text
ISSN1939-1404
2151-1535
2151-1535
DOI10.1109/JSTARS.2021.3090069

Cover

Abstract Traditional radar space-time adaptive processing (STAP) cannot efficiently suppress heterogeneous clutter because of a small number of independent and identically distributed training snapshots. In the article, we propose a new STAP approach exploiting structure-aware two-level block sparsity (STBS) of radar echoes, namely STBS-STAP. It enhances the performance on clutter suppression and target detection with limited training snapshots. The clutter angle-Doppler profile always appears in a continuous diagonal clustering structure and the radar echoes at the adjacent range cells commonly share the same sparse pattern. STBS-STAP employs STBS, i.e., both the diagonal clustering structure and the common sparsity property, to acquire a precise clutter covariance matrix estimation. Thus, the new STBS-STAP achieves better performance on clutter suppression compared with existing STAP methods with a small number of training samples. Besides, STBS-STAP achieves superior target detection performance due to the precise estimation of the statistical properties of the clutter. The superiority of STBS-STAP is verified by experiments on both simulated data and measured Mountain-Top data.
AbstractList Traditional radar space-time adaptive processing (STAP) cannot efficiently suppress heterogeneous clutter because of a small number of independent and identically distributed training snapshots. In the article, we propose a new STAP approach exploiting structure-aware two-level block sparsity (STBS) of radar echoes, namely STBS-STAP. It enhances the performance on clutter suppression and target detection with limited training snapshots. The clutter angle-Doppler profile always appears in a continuous diagonal clustering structure and the radar echoes at the adjacent range cells commonly share the same sparse pattern. STBS-STAP employs STBS, i.e., both the diagonal clustering structure and the common sparsity property, to acquire a precise clutter covariance matrix estimation. Thus, the new STBS-STAP achieves better performance on clutter suppression compared with existing STAP methods with a small number of training samples. Besides, STBS-STAP achieves superior target detection performance due to the precise estimation of the statistical properties of the clutter. The superiority of STBS-STAP is verified by experiments on both simulated data and measured Mountain-Top data.
Author He, You
Jiang, Zhizhuo
Li, Gang
Wang, Xueqian
Zhang, Xiao-Ping
Author_xml – sequence: 1
  givenname: Zhizhuo
  orcidid: 0000-0002-5269-2753
  surname: Jiang
  fullname: Jiang, Zhizhuo
  email: jzz16@mails.tsinghua.edu.cn
  organization: Department of Electronic Engineering, Tsinghua University, Beijing, China
– sequence: 2
  givenname: Xueqian
  orcidid: 0000-0002-8632-6073
  surname: Wang
  fullname: Wang, Xueqian
  email: wangxueqian@mail.tsinghua.edu.cn
  organization: Department of Electronic Engineering, Tsinghua University, Beijing, China
– sequence: 3
  givenname: Gang
  orcidid: 0000-0001-9755-2781
  surname: Li
  fullname: Li, Gang
  email: gangli@tsinghua.edu.cn
  organization: Department of Electronic Engineering, Tsinghua University, Beijing, China
– sequence: 4
  givenname: Xiao-Ping
  orcidid: 0000-0001-5241-0069
  surname: Zhang
  fullname: Zhang, Xiao-Ping
  email: xzhang@ee.ryerson.ca
  organization: Department of Electrical, Computer and Biomedical Engineering, Ryerson University, Toronto, ON, Canada
– sequence: 5
  givenname: You
  orcidid: 0000-0002-6111-340X
  surname: He
  fullname: He, You
  email: heyou_f@126.com
  organization: Research Institute of Information Fusion, Naval Aviation University, Yantai, China
BookMark eNqFkc1u1DAUhS1UJKaFJ-gmEusM1z_58XKoCrQaCcSEteXY15WHTBwcT0d5ezJN1UVZsLJsne-z7rmX5KIPPRJyTWFNKchP97tm83O3ZsDomoMEKOUbsmK0oDkteHFBVlRymVMB4h25HMf9nGCV5CvS7AZtMG_8AbON1UPyj5j9iMHgOPr-IWun7PYwdGE6X3YpHk06Rsw3Jx0xa04h3-IjdtnnLpjf2eyKo0_Te_LW6W7ED8_nFfn15ba5-ZZvv3-9u9lscyOgTnkrStRVC7YusQRTU1drDc5ZzYtCtiV1lawFWMpY4cAyxNaAZBVaWrgaHL8id4vXBr1XQ_QHHScVtFdPDyE-KB2TNx0q0VZaULBO01ZY6aRlteXQSmYsrwzOLrG4jv2gp5PuuhchBXVuWe3HNM-nzi2r55Zn7OOCDTH8OeKY1D4cYz9PrVhRUF4WADCn-JIyMYxjRPePe9nga7d8RRmfdPKhT1H77j_s9cJ6RHz5TYqSVxXnfwEIcqrs
CODEN IJSTHZ
CitedBy_id crossref_primary_10_1016_j_sigpro_2024_109585
crossref_primary_10_1109_TAES_2023_3337769
crossref_primary_10_1109_JSTARS_2025_3542421
crossref_primary_10_1109_JSTARS_2024_3522257
crossref_primary_10_1109_JSEN_2025_3538793
Cites_doi 10.1109/LSP.2014.2360688
10.1109/7.7181
10.1016/0165-1684(96)00007-2
10.1109/TGRS.2016.2561308
10.1109/LSP.2020.3010161
10.1109/JSTARS.2014.2359250
10.1007/s11045-021-00784-x
10.21236/ADA520187
10.1016/j.patcog.2017.11.016
10.1109/ICASSP.2019.8682628
10.1109/TAES.2019.2921141
10.1109/JSTARS.2015.2438898
10.1109/TAES.2017.2650639
10.1016/j.dsp.2015.06.011
10.1016/j.sigpro.2018.05.015
10.1109/TGRS.2013.2292074
10.1109/TIT.2007.909108
10.1109/LGRS.2018.2865536
10.1109/JSTARS.2020.2981046
10.1016/j.sigpro.2014.05.027
10.1109/TSP.2010.2044837
10.1109/RADAR.2019.8835816
10.1049/ip-rsn:20010557
10.1109/JSTARS.2018.2874128
10.1016/j.sigpro.2020.107669
10.1109/TAES.2017.2714938
10.1109/TGRS.2019.2901126
10.1109/TAES.2018.2805141
10.1109/TGRS.2017.2764920
10.1109/RADAR.2015.7131061
10.1109/JSTARS.2019.2956183
10.1117/1.JRS.14.026522
10.1109/MSP.2010.938029
10.1016/j.sigpro.2011.04.006
10.1109/TIT.2013.2273491
10.1109/TSP.2012.2222387
10.1109/TSP.2010.2048212
10.1109/LGRS.2016.2635104
10.1109/TSP.2019.2957640
10.1049/PBRA021E
10.1016/j.sigpro.2016.06.023
10.1109/LGRS.2012.2236639
10.1049/iet-rsn.2016.0118
10.1049/iet-rsn.2017.0425
10.1109/MAES.2004.1263229
10.1109/JSTSP.2015.2464187
10.1109/TCOMM.2002.1010618
10.1109/TSP.2005.849172
10.1109/TGRS.2015.2470518
10.1109/TGRS.2013.2274593
10.1109/TSP.2011.2172435
10.1109/78.157297
10.1111/j.1467-9868.2005.00532.x
10.1049/iet-rsn.2018.5307
10.1109/IGARSS.2009.5417664
10.1109/TSP.2016.2569471
10.1109/LSP.2013.2292589
10.1109/ICASSP.1996.543572
10.1049/iet-spr.2016.0183
10.1049/iet-rsn.2014.0285
10.1109/TAES.1973.309792
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021
DBID 97E
ESBDL
RIA
RIE
AAYXX
CITATION
7UA
8FD
C1K
F1W
FR3
H8D
H96
KR7
L.G
L7M
ADTOC
UNPAY
DOA
DOI 10.1109/JSTARS.2021.3090069
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE Xplore Open Access Journals
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
Water Resources Abstracts
Technology Research Database
Environmental Sciences and Pollution Management
ASFA: Aquatic Sciences and Fisheries Abstracts
Engineering Research Database
Aerospace Database
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
Civil Engineering Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Advanced Technologies Database with Aerospace
Unpaywall for CDI: Periodical Content
Unpaywall
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
Aerospace Database
Civil Engineering Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
Technology Research Database
ASFA: Aquatic Sciences and Fisheries Abstracts
Engineering Research Database
Advanced Technologies Database with Aerospace
Water Resources Abstracts
Environmental Sciences and Pollution Management
DatabaseTitleList

Aerospace Database
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
– sequence: 3
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
DeliveryMethod fulltext_linktorsrc
Discipline Geology
EISSN 2151-1535
EndPage 6397
ExternalDocumentID oai_doaj_org_article_4b7a410dfa1b4d9f9d28d30b92cd37ce
10.1109/jstars.2021.3090069
10_1109_JSTARS_2021_3090069
9463773
Genre orig-research
GrantInformation_xml – fundername: Shuimu Tsinghua Scholar Program
– fundername: China Postdoctoral Science Foundation
  grantid: 2020M680561
  funderid: 10.13039/501100002858
– fundername: Post-doctoral Innovative Talent Support
  grantid: BX20200195
– fundername: National Natural Science Foundation of China
  grantid: 61790551; 61925106
  funderid: 10.13039/501100001809
GroupedDBID 0R~
29I
4.4
5GY
5VS
6IK
97E
AAFWJ
AAJGR
AASAJ
AAWTH
ABAZT
ABVLG
ACIWK
AENEX
AETIX
AFPKN
AFRAH
AGSQL
ALMA_UNASSIGNED_HOLDINGS
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
DU5
EBS
EJD
ESBDL
GROUPED_DOAJ
HZ~
IFIPE
IPLJI
JAVBF
M43
O9-
OCL
OK1
RIA
RIE
RNS
AAYXX
CITATION
7UA
8FD
C1K
F1W
FR3
H8D
H96
KR7
L.G
L7M
ADTOC
UNPAY
ID FETCH-LOGICAL-c408t-b46ea7b0d86e60c81f8aa0ffda3559b61f79840d1225f0d2eebc0927ed15f80f3
IEDL.DBID UNPAY
ISSN 1939-1404
2151-1535
IngestDate Fri Oct 03 12:43:30 EDT 2025
Tue Aug 19 16:42:22 EDT 2025
Fri Jul 25 10:46:18 EDT 2025
Wed Oct 01 03:51:24 EDT 2025
Thu Apr 24 22:54:14 EDT 2025
Wed Aug 27 02:40:51 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Language English
License https://creativecommons.org/licenses/by-nc-nd/4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c408t-b46ea7b0d86e60c81f8aa0ffda3559b61f79840d1225f0d2eebc0927ed15f80f3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0001-9755-2781
0000-0002-8632-6073
0000-0001-5241-0069
0000-0002-6111-340X
0000-0002-5269-2753
OpenAccessLink https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ielx7/4609443/9314330/09463773.pdf
PQID 2551365000
PQPubID 75722
PageCount 12
ParticipantIDs doaj_primary_oai_doaj_org_article_4b7a410dfa1b4d9f9d28d30b92cd37ce
proquest_journals_2551365000
unpaywall_primary_10_1109_jstars_2021_3090069
crossref_primary_10_1109_JSTARS_2021_3090069
ieee_primary_9463773
crossref_citationtrail_10_1109_JSTARS_2021_3090069
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20210000
2021-00-00
20210101
2021-01-01
PublicationDateYYYYMMDD 2021-01-01
PublicationDate_xml – year: 2021
  text: 20210000
PublicationDecade 2020
PublicationPlace Piscataway
PublicationPlace_xml – name: Piscataway
PublicationTitle IEEE journal of selected topics in applied earth observations and remote sensing
PublicationTitleAbbrev JSTARS
PublicationYear 2021
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref57
ref13
ref56
ref12
ref58
ref14
ref53
ref52
ref55
ref11
ref54
ref10
ref17
ref16
ref19
ref18
ref51
ref50
yang (ref24) 2017; 53
ref46
ref45
sun (ref30) 0
ref48
ref47
ref42
ref41
ref44
ref43
ref49
ref8
ref9
ref4
ref3
ref6
guerci (ref15) 2003
ref5
ref40
ref35
ref34
ref37
wu (ref36) 2015; 22
ref31
ref33
ref32
ref2
ref1
ref39
ref38
ref23
wu (ref65) 2015; 9
ref26
ref25
ref64
ref20
ref63
ward (ref7) 1994
ref22
ref28
ref27
ref29
wang (ref21) 2017; 11
koller (ref59) 2009
ref60
ref62
sundman (ref61) 2014; 105
References_xml – volume: 22
  start-page: 430
  year: 2015
  ident: ref36
  article-title: Multi-task Bayesian compressive sensing exploiting intra-task dependency
  publication-title: IEEE Signal Process Lett
  doi: 10.1109/LSP.2014.2360688
– ident: ref16
  doi: 10.1109/7.7181
– ident: ref17
  doi: 10.1016/0165-1684(96)00007-2
– ident: ref9
  doi: 10.1109/TGRS.2016.2561308
– ident: ref47
  doi: 10.1109/LSP.2020.3010161
– ident: ref53
  doi: 10.1109/JSTARS.2014.2359250
– ident: ref45
  doi: 10.1007/s11045-021-00784-x
– ident: ref39
  doi: 10.21236/ADA520187
– ident: ref54
  doi: 10.1016/j.patcog.2017.11.016
– ident: ref37
  doi: 10.1109/ICASSP.2019.8682628
– ident: ref41
  doi: 10.1109/TAES.2019.2921141
– ident: ref10
  doi: 10.1109/JSTARS.2015.2438898
– ident: ref11
  doi: 10.1109/TAES.2017.2650639
– ident: ref33
  doi: 10.1016/j.dsp.2015.06.011
– year: 2009
  ident: ref59
  publication-title: Probabilistic Graphical Models-Principles and Techniques
– ident: ref44
  doi: 10.1016/j.sigpro.2018.05.015
– ident: ref55
  doi: 10.1109/TGRS.2013.2292074
– ident: ref57
  doi: 10.1109/TIT.2007.909108
– ident: ref46
  doi: 10.1109/LGRS.2018.2865536
– ident: ref3
  doi: 10.1109/JSTARS.2020.2981046
– volume: 105
  start-page: 298
  year: 2014
  ident: ref61
  article-title: Distributed greedy pursuit algorithms
  publication-title: Signal Process
  doi: 10.1016/j.sigpro.2014.05.027
– ident: ref32
  doi: 10.1109/TSP.2010.2044837
– ident: ref5
  doi: 10.1109/RADAR.2019.8835816
– ident: ref49
  doi: 10.1049/ip-rsn:20010557
– ident: ref1
  doi: 10.1109/JSTARS.2018.2874128
– ident: ref2
  doi: 10.1016/j.sigpro.2020.107669
– volume: 53
  start-page: 2756
  year: 2017
  ident: ref24
  article-title: Sparsity-based STAP using alternating direction method with gain/phase errors
  publication-title: IEEE Trans Aerosp Electron Syst
  doi: 10.1109/TAES.2017.2714938
– ident: ref14
  doi: 10.1109/TGRS.2019.2901126
– ident: ref22
  doi: 10.1109/TAES.2018.2805141
– ident: ref38
  doi: 10.1109/TGRS.2017.2764920
– ident: ref34
  doi: 10.1109/RADAR.2015.7131061
– ident: ref4
  doi: 10.1109/JSTARS.2019.2956183
– ident: ref42
  doi: 10.1117/1.JRS.14.026522
– ident: ref58
  doi: 10.1109/MSP.2010.938029
– ident: ref27
  doi: 10.1016/j.sigpro.2011.04.006
– ident: ref60
  doi: 10.1109/TIT.2013.2273491
– ident: ref20
  doi: 10.1109/TSP.2012.2222387
– ident: ref13
  doi: 10.1109/TSP.2010.2048212
– ident: ref64
  doi: 10.1109/LGRS.2016.2635104
– ident: ref43
  doi: 10.1109/TSP.2019.2957640
– year: 0
  ident: ref30
  article-title: Airborne radar STAP using sparse recovery of clutter spectrum
– ident: ref62
  doi: 10.1049/PBRA021E
– ident: ref25
  doi: 10.1016/j.sigpro.2016.06.023
– ident: ref52
  doi: 10.1109/LGRS.2012.2236639
– year: 2003
  ident: ref15
  publication-title: Space-Time Adaptive Processing for Radar
– volume: 11
  start-page: 177
  year: 2017
  ident: ref21
  article-title: Clutter nulling space-time adaptive processing algorithm based on sparse representation for airborne radar
  publication-title: IET Radar Sonar Navigat
  doi: 10.1049/iet-rsn.2016.0118
– ident: ref48
  doi: 10.1049/iet-rsn.2017.0425
– ident: ref8
  doi: 10.1109/MAES.2004.1263229
– ident: ref19
  doi: 10.1109/JSTSP.2015.2464187
– ident: ref18
  doi: 10.1109/TCOMM.2002.1010618
– ident: ref28
  doi: 10.1109/TSP.2005.849172
– ident: ref51
  doi: 10.1109/TGRS.2015.2470518
– ident: ref12
  doi: 10.1109/TGRS.2013.2274593
– ident: ref50
  doi: 10.1109/TSP.2011.2172435
– ident: ref56
  doi: 10.1109/78.157297
– year: 1994
  ident: ref7
  publication-title: Space-time adaptive processing for airborne radar
– ident: ref31
  doi: 10.1111/j.1467-9868.2005.00532.x
– ident: ref40
  doi: 10.1049/iet-rsn.2018.5307
– ident: ref29
  doi: 10.1109/IGARSS.2009.5417664
– ident: ref23
  doi: 10.1109/TSP.2016.2569471
– ident: ref35
  doi: 10.1109/LSP.2013.2292589
– ident: ref63
  doi: 10.1109/ICASSP.1996.543572
– ident: ref26
  doi: 10.1049/iet-spr.2016.0183
– volume: 9
  start-page: 778
  year: 2015
  ident: ref65
  article-title: Robust training samples selection algorithm based on spectral similarity for space-time adaptive processing in heterogeneous interference environments
  publication-title: IET Radar Sonar Navig
  doi: 10.1049/iet-rsn.2014.0285
– ident: ref6
  doi: 10.1109/TAES.1973.309792
SSID ssj0062793
Score 2.2867188
Snippet Traditional radar space-time adaptive processing (STAP) cannot efficiently suppress heterogeneous clutter because of a small number of independent and...
SourceID doaj
unpaywall
proquest
crossref
ieee
SourceType Open Website
Open Access Repository
Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 6386
SubjectTerms Airborne radar
Block sparsity
Clustering
Clutter
Covariance matrix
Detection
Doppler sonar
Echoes
Estimation
Mountains
Object detection
Radar
Radar clutter
radar clutter suppression
Radar echoes
Space-time adaptive processing
space-time adaptive processing (STAP)
Spacetime
Sparsity
Statistical methods
structure-aware two-level block sparsity-based STAP (STBS-STAP)
Target detection
Training
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1NaxsxEBUlUNpLaL7opknRIcduImll7epoh6YmpD3UDuQm9HlIjG2cBON_n5ld2cQEmkuPu-wOYmakebPMvkfImdMeSU-qkieAbzJqB1vKKQByLDXW9iyP2Cj-_qOGt_L6rnf3SuoLZ8I6euDOcRfS1VZyFpLlTgaddBBNqJjTwoeq9hFPX9bodTPVncFKQNpljiHO9AUkef_vCLpBwc8rppGed6sOtXT9WV9lC2p-ep7O7WppJ5NXVefqC9nNcJH2u2XukQ9xuk8-_mrleFcHZDyCljeW-B8H7Qc7x7OL5tl_qEnUrWgn6YsXo5Yq9nkRy_7SLiIdL2flDc4M0QFUtAcKttoJjUNye_VzfDkss05C6SVrnkonVbS1Y6FRUTHfcPQySylYABPaKZ5qDX1c4LB3EwsiRueZFnUMvJcalqojsjOdTeNXQpPUzDYp8tp6yQOS4QuWAONY7xKYK4hYe834TCKOWhYT0zYTTJvO1QZdbbKrC_Jj89K849D49-MDDMfmUSTAbm9AWpicFua9tCjIAQZzY0RLVdV1VZCTdXBN3qyPRqDIjUJliIKUm4C_Weo9wPXF49ZSj__HUr-Rz2iz-65zQnYgGeIpIJ0n971N6hddePkY
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: IEEE Electronic Library (IEL)
  dbid: RIE
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3Pb9MwFLa2SQgu_BqIbAPlwHHp7MS142OHGBNiHGgn7Wb554FVbdW1qspfz3uOG1FAiFsSOc6Lvvfs7yX29wh5b5VD0ZOmYhHoGw_KQkhZAUSOxtaYoWEBE8Wbr-L6ln--G94dkPN-L0wIIS0-CwM8TP_y_dyt8VPZheKikbI5JIeyFd1erd2oK2qZBHaBj6gKJWOywhCj6gJcfPRtDLlgzQYNVSjOuzcLJbH-XF1lj2g-Xs8WZrsx0-kvc87VM3Kzs7ZbanI_WK_swP34Tcjxf1_nOXmayWc56rzlBTkIs5fk0adU3Hd7TCZjSKBDhbtCypE3CxwJy7yTAGa40m7LrkAwnoyT8Ox6GarRxixDOdnMqy-4Aqm8hPnxvoS-0nqPV-T26uPkw3WVqy5UjtN2VVkugpGW-lYEQV3LEDMaozdATZQVLEoFWaFnMBJE6usQrKOqlsGzYWxpbF6To9l8Ft6QMnJFTRsDk8Zx5lFav6YRGJNxNkJ3Bal3KGiXJcmxMsZUp9SEKt1BpxE6naEryHl_06JT5Ph380uEt2-KctrpAkChc3RqbqXhjPpomOVeRQW2-oZaVTvfSBcKcozw9Z1k5ApytnMWnUP_QddYMkdgnYmCVL0D_WHqdyD_y4c9U0_-_pRT8gRbdd99zsgRwBveAhNa2XcpBH4C-mkDYQ
  priority: 102
  providerName: IEEE
Title Space-Time Adaptive Processing by Employing Structure-Aware Two-Level Block Sparsity
URI https://ieeexplore.ieee.org/document/9463773
https://www.proquest.com/docview/2551365000
https://ieeexplore.ieee.org/ielx7/4609443/9314330/09463773.pdf
https://doaj.org/article/4b7a410dfa1b4d9f9d28d30b92cd37ce
UnpaywallVersion publishedVersion
Volume 14
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 2151-1535
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0062793
  issn: 2151-1535
  databaseCode: DOA
  dateStart: 20200101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVIEE
  databaseName: IEEE Electronic Library (IEL)
  customDbUrl:
  eissn: 2151-1535
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0062793
  issn: 2151-1535
  databaseCode: RIE
  dateStart: 20080101
  isFulltext: true
  titleUrlDefault: https://ieeexplore.ieee.org/
  providerName: IEEE
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3PixMxFA7aRTz5axVnWcscPJo2mclkJseuuC6ii9gW1lNIJgm4W7qlttTuX-97mbRYBUFvM0MmJHxJ3veSl-8R8tqqFkVPSsoD0DfhlYUpZSUQORYaYyrDPTqKny7lxVR8uKqu0oZbvAvjvY_BZ36Aj_Es_5uf_aiHQoInIsqhKsHEl-DLKyHLugZX0IX75EhWwMV75Gh6-Xn0tTtKVhS1YzC7HJg1ClO7SrJDnKnhNZCvJep1F3xQMoWKvQemKSr4p5QrB-zz4Xq-MNuNmc1-MUTnj4nedaGLP7kZrFd20N79pu74_318Qh4ljpqPukH1lNzz82fkwfuYA3h7TCZj8LM9xcsj-ciZBS6YebpwAIYwt9u8yyOML-OoT7teejramKXPJ5tb-hEDlfIzMKM3OdQVw0Kek-n5u8nbC5qSM9BWsGZFrZDe1Ja5RnrJ2oYjtCwEZ4DBKCt5qBU4j47DghGYK7y3LVNF7R2vQsNC-YL05rdz_5LkQShmmuB5bVrBHSrwFywAsTKtDVBdRoodLrpNyuWYQGOmowfDlIZFbPRlrBFMncDMyJv9T4tOuOPvxc8Q8H1RVN2OHwAcnSaxFrY2gjMXDLfCqaCgra5kVhWtK-vWZ-QYAd1XktDLyOlu-Oi0QnzXBWbWkZiOIiN0P6T-aGo3TA-aevKP5U9JD6D2r4A8rWw_bjr04z3HfpotPwFruBQD
linkProvider Unpaywall
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LbxMxELZKESoXXgWxUGAPHLupvet9-JgiSoCkB5JKvVl-HmiURGmiKP31nfE6KwIIcdtd2d5ZfX584x1_Q8hHLQyKnhQZ80DfuBMahpSugMhR3yhVKubQURxdVoMr_u26vD4gp91ZGOdcCD5zPbwM__Lt3Kxxq-xM8Kqo6-IBeVhyzsv2tNZu3q3yOkjsAiMRGYrGRI0hRsUZdPL-jzF4gznrFVSgPO_eOhTk-mN-lT2qebSeLdR2o6bTX1adi6dktLO3DTa56a1XumfufpNy_N8PekaeRPqZ9tv-8pwcuNkL8uhLSO-7PSaTMbjQLsNzIWnfqgXOhWk8SwBrXKq3aZsiGG_GQXp2vXRZf6OWLp1s5tkQY5DSc1ghb1JoK0R8vCRXF58nnwZZzLuQGU6bVaZ55VStqW0qV1HTMESNem8VkBOhK-ZrAX6hZTAXeGpz57ShIq-dZaVvqC9ekcPZfOZek9RzQVXjHauV4cyiuH5OPXAmZbSH5hKS71CQJoqSY26MqQzOCRWyhU4idDJCl5DTrtKi1eT4d_FzhLcrioLa4QFAIeP4lFzXijNqvWKaW-EF2GoLqkVubFEbl5BjhK9rJCKXkJNdZ5Fx8N_KHJPmVJhpIiFZ14H-MPUn0P_l7Z6pb_7-lg_kaDAZDeXw6-X3t-Qx1mh3gU7IIUDt3gEvWun3YTjcA67tBq4
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Nj9MwELWgK8SJrwWR1YJy4IhbO3Gc-JhFLCsEK0RbaTlZ_pRgq25VWnXLr2cmcSsKEhLcksixbD3PzJvEfkPIK6scip6UlEegbyIoCyZlJRA5FhtjKsMDJoofL-XFVLy_qq7SB7fuLEwIodt8FoZ42f3L_xpmt_VISMhERDlSJYT4EnJ5JWRZ15AK-niXHMkKuPiAHE0vP7Vf-l_JiqJ2DFaXg7BGwbSrJDvEmRp9A_K1RL3ugg9LplCx9yA0dQr-qeTKAfu8v54vzHZjZrNfAtH5Q6J3U-j3n1wP1ys7dD9-U3f8_zk-Ig8SR83bflE9JnfC_Am5966rAbw9JpMx5NmB4uGRvPVmgQ4zTwcOIBDmdpv3dYTxZtzp066XgbYbswz5ZHNDP-BGpfwMwuh1Dn1120Kekun528mbC5qKM1AnWLOiVshgast8I4NkruEILYvRG2AwykoeawXJo-fgMCLzRQjWMVXUwfMqNiyWz8hgfjMPz0kehWKmiYHXxgnuUYG_YBGIlXE2QncZKXa4aJeUy7GAxkx3GQxTGpxY-3msEUydwMzI6_1Li1644-_NzxDwfVNU3e4eADg6GbEWtjaCMx8Nt8KrqGCsvmRWFc6XtQsZOUZA950k9DJyuls-OnmI77rAyjoSy1FkhO6X1B9D7ZfpwVBP_rH9KRkA1OEFkKeVfZks5CeM5xIN
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Space-Time+Adaptive+Processing+by+Employing+Structure-Aware+Two-Level+Block+Sparsity&rft.jtitle=IEEE+journal+of+selected+topics+in+applied+earth+observations+and+remote+sensing&rft.au=Jiang%2C+Zhizhuo&rft.au=Wang%2C+Xueqian&rft.au=Li%2C+Gang&rft.au=Zhang%2C+Xiao-Ping&rft.date=2021&rft.pub=IEEE&rft.issn=1939-1404&rft.volume=14&rft.spage=6386&rft.epage=6397&rft_id=info:doi/10.1109%2FJSTARS.2021.3090069&rft.externalDocID=9463773
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1939-1404&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1939-1404&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1939-1404&client=summon