Space-Time Adaptive Processing by Employing Structure-Aware Two-Level Block Sparsity
Traditional radar space-time adaptive processing (STAP) cannot efficiently suppress heterogeneous clutter because of a small number of independent and identically distributed training snapshots. In the article, we propose a new STAP approach exploiting structure-aware two-level block sparsity (STBS)...
Saved in:
| Published in | IEEE journal of selected topics in applied earth observations and remote sensing Vol. 14; pp. 6386 - 6397 |
|---|---|
| Main Authors | , , , , |
| Format | Journal Article |
| Language | English |
| Published |
Piscataway
IEEE
2021
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Subjects | |
| Online Access | Get full text |
| ISSN | 1939-1404 2151-1535 2151-1535 |
| DOI | 10.1109/JSTARS.2021.3090069 |
Cover
| Summary: | Traditional radar space-time adaptive processing (STAP) cannot efficiently suppress heterogeneous clutter because of a small number of independent and identically distributed training snapshots. In the article, we propose a new STAP approach exploiting structure-aware two-level block sparsity (STBS) of radar echoes, namely STBS-STAP. It enhances the performance on clutter suppression and target detection with limited training snapshots. The clutter angle-Doppler profile always appears in a continuous diagonal clustering structure and the radar echoes at the adjacent range cells commonly share the same sparse pattern. STBS-STAP employs STBS, i.e., both the diagonal clustering structure and the common sparsity property, to acquire a precise clutter covariance matrix estimation. Thus, the new STBS-STAP achieves better performance on clutter suppression compared with existing STAP methods with a small number of training samples. Besides, STBS-STAP achieves superior target detection performance due to the precise estimation of the statistical properties of the clutter. The superiority of STBS-STAP is verified by experiments on both simulated data and measured Mountain-Top data. |
|---|---|
| Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ISSN: | 1939-1404 2151-1535 2151-1535 |
| DOI: | 10.1109/JSTARS.2021.3090069 |