Low-Resolution Quantization in Phase Modulated Systems: Optimum Detectors and Error Rate Analysis
This paper studies optimum detectors and error rate analysis for wireless systems with low-resolution quantizers in the presence of fading and noise. A universal lower bound on the average symbol error probability (SEP), correct for all M-ary modulation schemes, is obtained when the number of quanti...
Saved in:
Published in | IEEE open journal of the Communications Society Vol. 1; pp. 1000 - 1021 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
New York
IEEE
2020
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Subjects | |
Online Access | Get full text |
ISSN | 2644-125X 2644-125X |
DOI | 10.1109/OJCOMS.2020.3010514 |
Cover
Summary: | This paper studies optimum detectors and error rate analysis for wireless systems with low-resolution quantizers in the presence of fading and noise. A universal lower bound on the average symbol error probability (SEP), correct for all M-ary modulation schemes, is obtained when the number of quantization bits is not enough to resolve M signal points. In the special case of M-ary phase shift keying (M-PSK), the maximum likelihood detector is derived. Utilizing the structure of the derived detector, a general average SEP expression for M-PSK modulation with n-bit quantization is obtained when the wireless channel is subject to fading with a circularly-symmetric distribution. For the Nakagami-m fading, it is shown that a transceiver architecture with n-bit quantization is asymptotically optimum in terms of communication reliability if n ≥ log 2 M + 1. That is, the decay exponent for the average SEP is the same and equal to m with infinite-bit and n-bit quantizers for n ≥ log 2 M + 1. On the other hand, it is only equal to 1/2 and 0 for n = log 2 M and n <; log 2 M, respectively. An extensive simulation study is performed to illustrate the accuracy of the derived results, energy efficiency gains obtained by means of low-resolution quantizers, performance comparison of phase modulated systems with independent in-phase and quadrature channel quantization and robustness of the derived results under channel estimation errors. |
---|---|
Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ISSN: | 2644-125X 2644-125X |
DOI: | 10.1109/OJCOMS.2020.3010514 |