Suspended sediment load prediction based on soft computing models and Black Widow Optimization Algorithm using an enhanced gamma test

The suspended sediment load (SSL) prediction is one of the most important issues in water engineering. In this article, the adaptive neuro-fuzzy interface system (ANFIS) and support vector machine (SVM) were used to estimate the SLL of two main tributaries of the Telar River placed in the north of I...

Full description

Saved in:
Bibliographic Details
Published inEnvironmental science and pollution research international Vol. 28; no. 35; pp. 48253 - 48273
Main Authors Panahi, Fatemeh, Ehteram, Mohammad, Emami, Mohammad
Format Journal Article
LanguageEnglish
Published Berlin/Heidelberg Springer Berlin Heidelberg 01.09.2021
Springer Nature B.V
Subjects
Online AccessGet full text
ISSN0944-1344
1614-7499
1614-7499
DOI10.1007/s11356-021-14065-4

Cover

More Information
Summary:The suspended sediment load (SSL) prediction is one of the most important issues in water engineering. In this article, the adaptive neuro-fuzzy interface system (ANFIS) and support vector machine (SVM) were used to estimate the SLL of two main tributaries of the Telar River placed in the north of Iran. The main Telar River had two main tributaries, namely, the Telar and the Kasilian. A new evolutionary algorithm, namely, the black widow optimization algorithm (BWOA), was used to enhance the precision of the ANFIS and SVM models for predicting daily SSL. The lagged rainfall, temperature, discharge, and SSL were used as the inputs to the models. The present study used a new hybrid Gamma test to determine the best input scenario. In the next step, the best input combination was determined based on the gamma value. In this research, the abilities of the ANFIS-BWOA and SVM-BWOA were benchmarked with the ANFIS-bat algorithm (BA), SVM-BA, SVM-particle swarm optimization (PSO), and ANFIS-PSO. The mean absolute error (MAE) of ANFIS-BWOA was 0.40%, 2.2%, and 2.5% lower than those of ANFIS-BA, ANFIS-PSO, and ANFIS models in the training level for Telar River. It was concluded that the ANFIS-BWOA had the highest value of R 2 among other models in the Telar River. The MAE of the ANFIS-BWOA, SVM-BWOA, SVM-PSO, SVM-BA, and SVM models were 899.12 (Ton/day), 934.23 (Ton/day), 987.12 (Ton/day), 976.12, and 989.12 (Ton/day), respectively, in the testing level for the Kasilian River. An uncertainty analysis was used to investigate the effect of uncertainty of the inputs (first scenario) and the model parameters (the second scenario) on the accuracy of models. It was observed that the input uncertainty higher than the parameter uncertainty.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ISSN:0944-1344
1614-7499
1614-7499
DOI:10.1007/s11356-021-14065-4