Integrated Transceivers for Emerging Medical Ultrasound Imaging Devices: A Review
As medical ultrasound imaging moves from conventional cart-based scanners to new form factors such as imaging catheters, hand-held point-of-care scanners and ultrasound patches, there is an increasing need for integrated transceivers that can be closely integrated with the transducer to provide chan...
Saved in:
| Published in | IEEE open journal of solid-state circuits Vol. 1; pp. 104 - 114 |
|---|---|
| Main Authors | , |
| Format | Journal Article |
| Language | English |
| Published |
New York
IEEE
2021
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Subjects | |
| Online Access | Get full text |
| ISSN | 2644-1349 2644-1349 |
| DOI | 10.1109/OJSSCS.2021.3115398 |
Cover
| Summary: | As medical ultrasound imaging moves from conventional cart-based scanners to new form factors such as imaging catheters, hand-held point-of-care scanners and ultrasound patches, there is an increasing need for integrated transceivers that can be closely integrated with the transducer to provide channel-count reduction, improved signal quality and even full digitization. This paper reviews compact and power-efficient circuit solutions for such transceivers. It starts with a brief overview of ultrasound transducer technologies and the operating principles of the ultrasound transmit-receive signal path. For transmission, high-voltage pulsers are reviewed, from compact unipolar pulsers to multi-level pulsers that provide amplitude control and improved power efficiency. The review of receive circuits starts with low-noise amplifiers as the power- and performance-limiting building block. Solutions for time-gain compensation are discussed, which are essential to reduce signal dynamic range by compensating for the decaying echo-signal amplitude associated with propagation attenuation. Finally, the option of direct digitization of the echo signal at the transducer is discussed. The paper ends with a reflection on future opportunities and challenges in the area of integrated circuits for ultrasound applications. |
|---|---|
| Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ISSN: | 2644-1349 2644-1349 |
| DOI: | 10.1109/OJSSCS.2021.3115398 |