Integrated Transceivers for Emerging Medical Ultrasound Imaging Devices: A Review
As medical ultrasound imaging moves from conventional cart-based scanners to new form factors such as imaging catheters, hand-held point-of-care scanners and ultrasound patches, there is an increasing need for integrated transceivers that can be closely integrated with the transducer to provide chan...
        Saved in:
      
    
          | Published in | IEEE open journal of solid-state circuits Vol. 1; pp. 104 - 114 | 
|---|---|
| Main Authors | , | 
| Format | Journal Article | 
| Language | English | 
| Published | 
        New York
          IEEE
    
        2021
     The Institute of Electrical and Electronics Engineers, Inc. (IEEE)  | 
| Subjects | |
| Online Access | Get full text | 
| ISSN | 2644-1349 2644-1349  | 
| DOI | 10.1109/OJSSCS.2021.3115398 | 
Cover
| Summary: | As medical ultrasound imaging moves from conventional cart-based scanners to new form factors such as imaging catheters, hand-held point-of-care scanners and ultrasound patches, there is an increasing need for integrated transceivers that can be closely integrated with the transducer to provide channel-count reduction, improved signal quality and even full digitization. This paper reviews compact and power-efficient circuit solutions for such transceivers. It starts with a brief overview of ultrasound transducer technologies and the operating principles of the ultrasound transmit-receive signal path. For transmission, high-voltage pulsers are reviewed, from compact unipolar pulsers to multi-level pulsers that provide amplitude control and improved power efficiency. The review of receive circuits starts with low-noise amplifiers as the power- and performance-limiting building block. Solutions for time-gain compensation are discussed, which are essential to reduce signal dynamic range by compensating for the decaying echo-signal amplitude associated with propagation attenuation. Finally, the option of direct digitization of the echo signal at the transducer is discussed. The paper ends with a reflection on future opportunities and challenges in the area of integrated circuits for ultrasound applications. | 
|---|---|
| Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14  | 
| ISSN: | 2644-1349 2644-1349  | 
| DOI: | 10.1109/OJSSCS.2021.3115398 |