GOAMLP: Network Intrusion Detection With Multilayer Perceptron and Grasshopper Optimization Algorithm

In this paper, an intrusion detection system is introduced that uses data mining and machine learning concepts to detect network intrusion patterns. In the proposed method, an artificial neural network (ANN) is used as a learning technique in intrusion detection. The metaheuristic algorithm with the...

Full description

Saved in:
Bibliographic Details
Published inIEEE access Vol. 8; pp. 215202 - 215213
Main Authors Moghanian, Shadi, Saravi, Farshid Bagheri, Javidi, Giti, Sheybani, Ehsan O.
Format Journal Article
LanguageEnglish
Published Piscataway IEEE 2020
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text
ISSN2169-3536
2169-3536
DOI10.1109/ACCESS.2020.3040740

Cover

More Information
Summary:In this paper, an intrusion detection system is introduced that uses data mining and machine learning concepts to detect network intrusion patterns. In the proposed method, an artificial neural network (ANN) is used as a learning technique in intrusion detection. The metaheuristic algorithm with the swarm-based approach is used to reduce intrusion detection errors. In the proposed method, the Grasshopper Optimization Algorithm (GOA) is used for better and more accurate learning of ANNs to reduce intrusion detection error rate. The role of the GOAMLP algorithm is to minimize the intrusion detection error in the neural network by selecting useful parameters such as weight and bias. Our implementation in MATLAB software and using the KDD and UNSW datasets show that the proposed method detects abnormal, malicious traffic and attacks with high accuracy. The GOAMLP method outperforms and is more accurate than the existing state-of-the-art techniques such as RF, XGBoost, and embedded learning of ANN with BOA, HHO, and BWO algorithms in network intrusion detection.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:2169-3536
2169-3536
DOI:10.1109/ACCESS.2020.3040740