Sparse Reconstruction Based on the ADMM and Lasso-LSQR for Bearings Vibration Signals
In this paper, we introduce a novel method for reconstructing roller bearings vibration signals. As well as the sparse reconstruction algorithm, our approach is based on the Lasso via the alternate direction multiplier method (ADMM) and optimized by least square QR-factorization (LSQR), which takes...
Saved in:
| Published in | IEEE access Vol. 5; pp. 20083 - 20088 |
|---|---|
| Main Authors | , , , , |
| Format | Journal Article |
| Language | English |
| Published |
Piscataway
IEEE
01.01.2017
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Subjects | |
| Online Access | Get full text |
| ISSN | 2169-3536 2169-3536 |
| DOI | 10.1109/ACCESS.2017.2757026 |
Cover
| Summary: | In this paper, we introduce a novel method for reconstructing roller bearings vibration signals. As well as the sparse reconstruction algorithm, our approach is based on the Lasso via the alternate direction multiplier method (ADMM) and optimized by least square QR-factorization (LSQR), which takes the priority over the Basis Pursuit and Lasso in iterations and errors. First, we use the discrete cosine transformation to achieve sparse signals, then we compress signals by using the Gaussian random matrix, and, finally, we reconstruct the original signals with the Lasso-LSQR by using the ADMM. According to the results, vibration signals can keep sufficient reconstruction accuracy with high compressive ratio, which validates the effectiveness of the method for vibration signals. |
|---|---|
| Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ISSN: | 2169-3536 2169-3536 |
| DOI: | 10.1109/ACCESS.2017.2757026 |