Sparse Reconstruction Based on the ADMM and Lasso-LSQR for Bearings Vibration Signals

In this paper, we introduce a novel method for reconstructing roller bearings vibration signals. As well as the sparse reconstruction algorithm, our approach is based on the Lasso via the alternate direction multiplier method (ADMM) and optimized by least square QR-factorization (LSQR), which takes...

Full description

Saved in:
Bibliographic Details
Published inIEEE access Vol. 5; pp. 20083 - 20088
Main Authors Song, Wanqing, Nazarova, Maria N., Zhang, Yujin, Zhang, Ting, Li, Ming
Format Journal Article
LanguageEnglish
Published Piscataway IEEE 01.01.2017
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text
ISSN2169-3536
2169-3536
DOI10.1109/ACCESS.2017.2757026

Cover

More Information
Summary:In this paper, we introduce a novel method for reconstructing roller bearings vibration signals. As well as the sparse reconstruction algorithm, our approach is based on the Lasso via the alternate direction multiplier method (ADMM) and optimized by least square QR-factorization (LSQR), which takes the priority over the Basis Pursuit and Lasso in iterations and errors. First, we use the discrete cosine transformation to achieve sparse signals, then we compress signals by using the Gaussian random matrix, and, finally, we reconstruct the original signals with the Lasso-LSQR by using the ADMM. According to the results, vibration signals can keep sufficient reconstruction accuracy with high compressive ratio, which validates the effectiveness of the method for vibration signals.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:2169-3536
2169-3536
DOI:10.1109/ACCESS.2017.2757026