Physical Limitation of Range-Domain Secrecy Using Frequency Diverse Arrays

In this paper, the concept and recent development of exploiting frequency diverse array (FDA) and its variants for the physical-layer wireless security have been revisited and carefully examined. Following rigorous analytical derivation and illustrative simulations, the authors realize that the inve...

Full description

Saved in:
Bibliographic Details
Published inIEEE access Vol. 8; pp. 63302 - 63309
Main Authors Ding, Yuan, Narbudowicz, Adam, Goussetis, George
Format Journal Article
LanguageEnglish
Published Piscataway IEEE 2020
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text
ISSN2169-3536
2169-3536
DOI10.1109/ACCESS.2020.2984643

Cover

More Information
Summary:In this paper, the concept and recent development of exploiting frequency diverse array (FDA) and its variants for the physical-layer wireless security have been revisited and carefully examined. Following rigorous analytical derivation and illustrative simulations, the authors realize that the investigations performed in some recent works overlooked one critical issue facing the real-world applications, and system models established and used before were based on a limited assumption, i.e. that the legitimate and eavesdropping users at different ranges sample the signal waveforms at the same time instant. The limitation of this assumption results in their studies inconclusive. The authors aim to take the first step to divert research efforts and rectify the previous incomplete analyses. The authors argue that in the current technology base the FDA cannot secure a free-space wireless transmission in range domain, because the previously claimed `secure reception region' propagates in range domain as time elapses.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:2169-3536
2169-3536
DOI:10.1109/ACCESS.2020.2984643