Forecasting water quality variable using deep learning and weighted averaging ensemble models

Water quality variables, including chlorophyll-a (Chl-a), play a pivotal role in comprehending and evaluating the condition of aquatic ecosystems. Chl-a, a pigment present in diverse aquatic organisms, notably algae and cyanobacteria, serves as a valuable indicator of water quality. Thus, the object...

Full description

Saved in:
Bibliographic Details
Published inEnvironmental science and pollution research international Vol. 30; no. 59; pp. 124316 - 124340
Main Authors Zamani, Mohammad G., Nikoo, Mohammad Reza, Jahanshahi, Sina, Barzegar, Rahim, Meydani, Amirreza
Format Journal Article
LanguageEnglish
Published Berlin/Heidelberg Springer Berlin Heidelberg 01.12.2023
Springer Nature B.V
Subjects
Online AccessGet full text
ISSN1614-7499
0944-1344
1614-7499
DOI10.1007/s11356-023-30774-4

Cover

Abstract Water quality variables, including chlorophyll-a (Chl-a), play a pivotal role in comprehending and evaluating the condition of aquatic ecosystems. Chl-a, a pigment present in diverse aquatic organisms, notably algae and cyanobacteria, serves as a valuable indicator of water quality. Thus, the objectives of this study encompass: (1) the assessment of the predictive capabilities of four deep learning (DL) models — namely, recurrent neural network (RNN), long short-term memory (LSTM), gated recurrence unit (GRU), and temporal convolutional network (TCN) — in forecasting Chl-a concentrations; (2) the incorporation of these DL models into ensemble models (EMs) employing genetic algorithm (GA) and non-dominated sorting genetic algorithm (NSGA-II) to harness the strengths of each standalone model; and (3) the evaluation of the efficacy of the developed EMs. Utilizing data collected at 15-min intervals from Small Prespa Lake (SPL) in Greece, the models employed hourly Chl-a concentration lag times, extending up to 6 h, as models’ inputs to forecast Chla (t+1). The proposed models underwent training on 70% of the dataset and were subsequently validated on the remaining 30%. Among the standalone DL models, the GRU model exhibited superior performance in Chl-a forecasting, surpassing the RNN, LSTM, and TCN models by 8%, 2%, and 2%, respectively. Furthermore, the integration of DL models through single-objective GA and multi-objective NSGA-II optimization algorithms yielded hybrid models adept at effectively forecasting both low and high Chl-a concentrations. The ensemble model based on NSGA-II outperformed standalone DL models as well as the GA-based model across a range of evaluation indices. For instance, considering the R -squared metric, the study’s findings demonstrated that the EM-NSGA-II stands out with exceptional effectiveness compared to DL and EM-GA models, showcasing improvements of 14% (RNN), 8% (LSTM), 6% (GRU), 8% (TCN), and 3% (EM-GA) during the testing phase.
AbstractList Water quality variables, including chlorophyll-a (Chl-a), play a pivotal role in comprehending and evaluating the condition of aquatic ecosystems. Chl-a, a pigment present in diverse aquatic organisms, notably algae and cyanobacteria, serves as a valuable indicator of water quality. Thus, the objectives of this study encompass: (1) the assessment of the predictive capabilities of four deep learning (DL) models — namely, recurrent neural network (RNN), long short-term memory (LSTM), gated recurrence unit (GRU), and temporal convolutional network (TCN) — in forecasting Chl-a concentrations; (2) the incorporation of these DL models into ensemble models (EMs) employing genetic algorithm (GA) and non-dominated sorting genetic algorithm (NSGA-II) to harness the strengths of each standalone model; and (3) the evaluation of the efficacy of the developed EMs. Utilizing data collected at 15-min intervals from Small Prespa Lake (SPL) in Greece, the models employed hourly Chl-a concentration lag times, extending up to 6 h, as models’ inputs to forecast Chla (t+1). The proposed models underwent training on 70% of the dataset and were subsequently validated on the remaining 30%. Among the standalone DL models, the GRU model exhibited superior performance in Chl-a forecasting, surpassing the RNN, LSTM, and TCN models by 8%, 2%, and 2%, respectively. Furthermore, the integration of DL models through single-objective GA and multi-objective NSGA-II optimization algorithms yielded hybrid models adept at effectively forecasting both low and high Chl-a concentrations. The ensemble model based on NSGA-II outperformed standalone DL models as well as the GA-based model across a range of evaluation indices. For instance, considering the R-squared metric, the study’s findings demonstrated that the EM-NSGA-II stands out with exceptional effectiveness compared to DL and EM-GA models, showcasing improvements of 14% (RNN), 8% (LSTM), 6% (GRU), 8% (TCN), and 3% (EM-GA) during the testing phase.
Water quality variables, including chlorophyll-a (Chl-a), play a pivotal role in comprehending and evaluating the condition of aquatic ecosystems. Chl-a, a pigment present in diverse aquatic organisms, notably algae and cyanobacteria, serves as a valuable indicator of water quality. Thus, the objectives of this study encompass: (1) the assessment of the predictive capabilities of four deep learning (DL) models — namely, recurrent neural network (RNN), long short-term memory (LSTM), gated recurrence unit (GRU), and temporal convolutional network (TCN) — in forecasting Chl-a concentrations; (2) the incorporation of these DL models into ensemble models (EMs) employing genetic algorithm (GA) and non-dominated sorting genetic algorithm (NSGA-II) to harness the strengths of each standalone model; and (3) the evaluation of the efficacy of the developed EMs. Utilizing data collected at 15-min intervals from Small Prespa Lake (SPL) in Greece, the models employed hourly Chl-a concentration lag times, extending up to 6 h, as models’ inputs to forecast Chla (t+1). The proposed models underwent training on 70% of the dataset and were subsequently validated on the remaining 30%. Among the standalone DL models, the GRU model exhibited superior performance in Chl-a forecasting, surpassing the RNN, LSTM, and TCN models by 8%, 2%, and 2%, respectively. Furthermore, the integration of DL models through single-objective GA and multi-objective NSGA-II optimization algorithms yielded hybrid models adept at effectively forecasting both low and high Chl-a concentrations. The ensemble model based on NSGA-II outperformed standalone DL models as well as the GA-based model across a range of evaluation indices. For instance, considering the R -squared metric, the study’s findings demonstrated that the EM-NSGA-II stands out with exceptional effectiveness compared to DL and EM-GA models, showcasing improvements of 14% (RNN), 8% (LSTM), 6% (GRU), 8% (TCN), and 3% (EM-GA) during the testing phase.
Water quality variables, including chlorophyll-a (Chl-a), play a pivotal role in comprehending and evaluating the condition of aquatic ecosystems. Chl-a, a pigment present in diverse aquatic organisms, notably algae and cyanobacteria, serves as a valuable indicator of water quality. Thus, the objectives of this study encompass: (1) the assessment of the predictive capabilities of four deep learning (DL) models - namely, recurrent neural network (RNN), long short-term memory (LSTM), gated recurrence unit (GRU), and temporal convolutional network (TCN) - in forecasting Chl-a concentrations; (2) the incorporation of these DL models into ensemble models (EMs) employing genetic algorithm (GA) and non-dominated sorting genetic algorithm (NSGA-II) to harness the strengths of each standalone model; and (3) the evaluation of the efficacy of the developed EMs. Utilizing data collected at 15-min intervals from Small Prespa Lake (SPL) in Greece, the models employed hourly Chl-a concentration lag times, extending up to 6 h, as models' inputs to forecast Chla (t+1). The proposed models underwent training on 70% of the dataset and were subsequently validated on the remaining 30%. Among the standalone DL models, the GRU model exhibited superior performance in Chl-a forecasting, surpassing the RNN, LSTM, and TCN models by 8%, 2%, and 2%, respectively. Furthermore, the integration of DL models through single-objective GA and multi-objective NSGA-II optimization algorithms yielded hybrid models adept at effectively forecasting both low and high Chl-a concentrations. The ensemble model based on NSGA-II outperformed standalone DL models as well as the GA-based model across a range of evaluation indices. For instance, considering the R-squared metric, the study's findings demonstrated that the EM-NSGA-II stands out with exceptional effectiveness compared to DL and EM-GA models, showcasing improvements of 14% (RNN), 8% (LSTM), 6% (GRU), 8% (TCN), and 3% (EM-GA) during the testing phase.Water quality variables, including chlorophyll-a (Chl-a), play a pivotal role in comprehending and evaluating the condition of aquatic ecosystems. Chl-a, a pigment present in diverse aquatic organisms, notably algae and cyanobacteria, serves as a valuable indicator of water quality. Thus, the objectives of this study encompass: (1) the assessment of the predictive capabilities of four deep learning (DL) models - namely, recurrent neural network (RNN), long short-term memory (LSTM), gated recurrence unit (GRU), and temporal convolutional network (TCN) - in forecasting Chl-a concentrations; (2) the incorporation of these DL models into ensemble models (EMs) employing genetic algorithm (GA) and non-dominated sorting genetic algorithm (NSGA-II) to harness the strengths of each standalone model; and (3) the evaluation of the efficacy of the developed EMs. Utilizing data collected at 15-min intervals from Small Prespa Lake (SPL) in Greece, the models employed hourly Chl-a concentration lag times, extending up to 6 h, as models' inputs to forecast Chla (t+1). The proposed models underwent training on 70% of the dataset and were subsequently validated on the remaining 30%. Among the standalone DL models, the GRU model exhibited superior performance in Chl-a forecasting, surpassing the RNN, LSTM, and TCN models by 8%, 2%, and 2%, respectively. Furthermore, the integration of DL models through single-objective GA and multi-objective NSGA-II optimization algorithms yielded hybrid models adept at effectively forecasting both low and high Chl-a concentrations. The ensemble model based on NSGA-II outperformed standalone DL models as well as the GA-based model across a range of evaluation indices. For instance, considering the R-squared metric, the study's findings demonstrated that the EM-NSGA-II stands out with exceptional effectiveness compared to DL and EM-GA models, showcasing improvements of 14% (RNN), 8% (LSTM), 6% (GRU), 8% (TCN), and 3% (EM-GA) during the testing phase.
Author Meydani, Amirreza
Barzegar, Rahim
Zamani, Mohammad G.
Nikoo, Mohammad Reza
Jahanshahi, Sina
Author_xml – sequence: 1
  givenname: Mohammad G.
  surname: Zamani
  fullname: Zamani, Mohammad G.
  organization: Department of Water Resources Engineering, Faculty of Civil, Water and Environmental Engineering, Amirkabir University of Technology
– sequence: 2
  givenname: Mohammad Reza
  orcidid: 0000-0002-3740-4389
  surname: Nikoo
  fullname: Nikoo, Mohammad Reza
  email: m.reza@squ.edu.om
  organization: Department of Civil and Architectural Engineering, Sultan Qaboos University
– sequence: 3
  givenname: Sina
  surname: Jahanshahi
  fullname: Jahanshahi, Sina
  organization: Department of Water Resources Engineering, Faculty of Civil, Water and Environmental Engineering, University of Tehran
– sequence: 4
  givenname: Rahim
  surname: Barzegar
  fullname: Barzegar, Rahim
  organization: Groundwater Research Group (GRES), Research Institute on Mines and Environment (RIME), Université du Québec en Abitibi-Témiscamingue (UQAT)
– sequence: 5
  givenname: Amirreza
  surname: Meydani
  fullname: Meydani, Amirreza
  organization: Department of Geography and Spatial Sciences, University of Delaware
BackLink https://www.ncbi.nlm.nih.gov/pubmed/37996598$$D View this record in MEDLINE/PubMed
BookMark eNqFkctu1TAURS1URB_wAwxQJCZMAraPn0NUUUCqxASGyDpxTi6pEufWTlr170m4rUAdlJFfa23Z3qfsKE2JGHst-HvBuf1QhABtai6hBm6tqtUzdiKMULVV3h_9Mz9mp6VccS65l_YFOwbrvdHenbCfF1OmiGXu0666xZlydb3g0M931Q3mHpuBqqVshy3RvhoIc9pWmNrqlvrdr5naCm8o427bplRo3JxxamkoL9nzDodCr-7HM_bj4tP38y_15bfPX88_XtZRcTfXtokdaTBktXZckQArTGMkIjRSaowEHHyjZBvJ8M6gVk7ZBqO23HSSwxl7d8jd5-l6oTKHsS-RhgETTUsJIDRorQHkf1HpPDhQwm2pbx-hV9OS0_qQID1XTgK4LfDNPbU0I7Vhn_sR8114-OMVcAcg5qmUTF2I_YxzP6U5Yz8EwcNWZzjUGdY6w586g1pV-Uh9SH9SgoNUVjjtKP-99hPWb2DDsQM
CitedBy_id crossref_primary_10_1016_j_uclim_2024_102272
crossref_primary_10_1371_journal_pone_0310218
crossref_primary_10_1007_s11356_024_33058_7
crossref_primary_10_1007_s40996_024_01685_2
crossref_primary_10_1016_j_jhydrol_2024_131365
crossref_primary_10_1016_j_autcon_2024_105655
crossref_primary_10_1080_09593330_2024_2415722
crossref_primary_10_1016_j_jenvman_2024_122903
crossref_primary_10_1016_j_jhydrol_2024_131767
crossref_primary_10_1007_s10723_024_09752_8
crossref_primary_10_1016_j_engappai_2024_108420
crossref_primary_10_3389_fmars_2024_1365047
crossref_primary_10_1007_s00158_024_03772_4
crossref_primary_10_1016_j_aei_2024_102485
crossref_primary_10_1038_s41598_024_66699_2
crossref_primary_10_1155_2023_8089395
crossref_primary_10_3390_cli12080119
crossref_primary_10_1007_s11042_024_19126_7
Cites_doi 10.1016/j.ecoinf.2018.01.005
10.1016/j.jag.2018.07.018
10.1016/j.jhydrol.2021.126266
10.1007/s41207-020-0151-8
10.1016/j.jclepro.2020.125266
10.3390/w14213390
10.1016/j.ecolind.2020.107218
10.1016/j.knosys.2020.106062
10.1016/j.jenvman.2023.118368
10.1007/s11356-022-18914-8
10.1109/TEVC.2007.892759
10.1007/s11356-019-05116-y
10.1007/s10661-020-08631-5
10.1007/s11356-022-22719-0
10.1007/978-3-540-73190-0_2
10.1007/s11899-016-0355-9
10.1007/978-3-031-26580-8_5
10.1016/j.jhydrol.2019.06.075
10.1007/s00477-016-1338-z
10.1080/02626667.2023.2180375
10.1007/s11356-021-17084-3
10.1007/s00477-020-01776-2
10.3389/fenvs.2022.880246
10.1007/s11356-022-19014-3
10.1080/02626667.2019.1628347
10.1109/ACCESS.2019.2903015
10.1007/s10661-013-3450-6
10.11591/ijai.v9.i1.pp126-134
10.1007/s00477-017-1394-z
10.1016/B978-0-323-85597-6.00020-3
10.1128/msystems.01111-21
10.1145/3287560.3287595
10.23919/ICACT.2019.8702027
10.1016/j.scitotenv.2023.161614
10.1007/s12517-022-09546-w
10.1016/j.ecolind.2023.109882
10.1016/j.scitotenv.2023.162998
10.48550/arXiv.1803.01271
10.1162/neco.1997.9.8.1735
10.1016/j.agwat.2020.106303
10.1007/s10661-014-3719-4
10.1016/j.jag.2023.103364
10.3390/w9070524
10.1109/81.222795
10.3390/su11072058
10.1109/4235.996017
10.3390/w12061822
10.1007/978-3-319-93025-1_4
10.1016/j.jenvman.2022.115923
10.1016/B978-0-12-813314-9.00002-5
10.1061/(ASCE)EE.1943-7870.0001528
10.1109/TGRS.2020.2964627
10.1016/j.eswa.2023.121076
10.1007/s40808-015-0072-8
10.1016/j.watres.2019.115454
10.1016/j.jclepro.2022.135671
10.1007/978-3-030-23335-8_15
10.1007/s11269-013-0314-3
10.3390/w15142532
10.3390/w14040610
10.1016/j.jenvman.2023.118006
10.1016/j.scitotenv.2022.156613
10.1007/s11269-023-03428-w
10.1016/j.jhydrol.2008.08.026
10.1016/j.jhydrol.2021.126196
10.1016/j.scitotenv.2020.137612
10.1016/j.envpol.2022.119611
10.1016/j.asoc.2019.105837
10.1007/s11356-022-18644-x
10.1111/stan.12111
10.1080/10298436.2022.2057975
10.1016/j.oneear.2022.01.008
10.1016/j.aquaculture.2014.06.029
10.5194/hess-26-1001-2022
10.1016/j.jhydrol.2019.124432
10.1080/02626667.2021.1928673
10.1201/b12207
10.3389/frwa.2021.652100
10.1007/s11042-020-10139-6
10.1016/j.ecolind.2017.09.056
10.1016/j.watres.2022.118532
10.2166/wqrj.2019.053
10.1109/ACCESS.2020.3030878
10.1016/j.jclepro.2023.137931
10.1109/ITNEC48623.2020.9084730
10.1016/j.ejrh.2022.101228
10.1007/s00477-015-1088-3
10.1109/TNNLS.2016.2582924
10.3390/w13202907
10.1007/s11356-019-06360-y
10.1002/er.8392
10.1016/j.scitotenv.2018.09.320
10.1016/j.jclepro.2023.137885
10.1016/j.conbuildmat.2021.125958
10.1080/21622515.2022.2118084
10.1016/j.uclim.2022.101237
10.1016/j.energy.2022.124376
10.1029/2018WR022643
10.1007/978-3-642-24797-2
10.1016/j.jenvman.2023.118436
10.1016/j.neucom.2016.07.036
10.1007/s40808-021-01253-x
10.1109/5.554205
10.1007/s40515-022-00244-4
10.48550/arXiv.1406.1078
10.1016/j.eswa.2020.113660
10.1038/s41598-023-39156-9
10.1016/j.scitotenv.2022.153311
10.1007/3-540-45356-3_83
10.1016/j.jhydrol.2019.123962
10.1016/j.watres.2020.116349
10.1016/j.jssas.2020.08.001
10.1016/j.envsoft.2020.104792
10.1016/j.scitotenv.2018.08.221
10.1007/s10462-021-10038-8
ContentType Journal Article
Copyright The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
2023. The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature.
Copyright_xml – notice: The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
– notice: 2023. The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature.
DBID AAYXX
CITATION
NPM
3V.
7QL
7SN
7T7
7TV
7U7
7WY
7WZ
7X7
7XB
87Z
88E
88I
8AO
8C1
8FD
8FI
8FJ
8FK
8FL
ABUWG
AEUYN
AFKRA
ATCPS
AZQEC
BENPR
BEZIV
BHPHI
C1K
CCPQU
DWQXO
FR3
FRNLG
FYUFA
F~G
GHDGH
GNUQQ
HCIFZ
K60
K6~
K9.
L.-
M0C
M0S
M1P
M2P
M7N
P64
PATMY
PHGZM
PHGZT
PJZUB
PKEHL
PPXIY
PQBIZ
PQBZA
PQEST
PQQKQ
PQUKI
PYCSY
Q9U
7X8
7S9
L.6
DOI 10.1007/s11356-023-30774-4
DatabaseName CrossRef
PubMed
ProQuest Central (Corporate)
Bacteriology Abstracts (Microbiology B)
Ecology Abstracts
Industrial and Applied Microbiology Abstracts (Microbiology A)
Pollution Abstracts
Toxicology Abstracts
ABI/INFORM Collection (NTUSG)
ABI/INFORM Global (PDF only)
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
ABI/INFORM Collection
Medical Database (Alumni Edition)
Science Database (Alumni Edition)
ProQuest Pharma Collection
Proquest Public Health Database
Technology Research Database
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ABI/INFORM Collection (Alumni)
ProQuest Central (Alumni)
ProQuest One Sustainability
ProQuest Central UK/Ireland
Agricultural & Environmental Science Collection
ProQuest Central Essentials
ProQuest Central
Business Premium Collection
Natural Science Collection
Environmental Sciences and Pollution Management
ProQuest One
ProQuest Central
Engineering Research Database
Business Premium Collection (Alumni)
Proquest Health Research Premium Collection
ABI/INFORM Global (Corporate)
Health Research Premium Collection (Alumni)
ProQuest Central Student
SciTech Premium Collection
ProQuest Business Collection (Alumni Edition)
ProQuest Business Collection
ProQuest Health & Medical Complete (Alumni)
ABI/INFORM Professional Advanced
ABI/INFORM global
ProQuest Health & Medical Collection
Medical Database
Science Database
Algology Mycology and Protozoology Abstracts (Microbiology C)
Biotechnology and BioEngineering Abstracts
Environmental Science Database
Proquest Central Premium
ProQuest One Academic
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Business
ProQuest One Business (Alumni)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic
ProQuest One Academic UKI Edition
Environmental Science Collection
ProQuest Central Basic
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
PubMed
ProQuest Business Collection (Alumni Edition)
ProQuest Central Student
ProQuest Central Essentials
SciTech Premium Collection
ABI/INFORM Complete
Environmental Sciences and Pollution Management
ProQuest One Sustainability
Health Research Premium Collection
Natural Science Collection
Health & Medical Research Collection
Industrial and Applied Microbiology Abstracts (Microbiology A)
ProQuest Central (New)
ProQuest Medical Library (Alumni)
Business Premium Collection
ABI/INFORM Global
ProQuest Science Journals (Alumni Edition)
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
Health Research Premium Collection (Alumni)
ProQuest Business Collection
Ecology Abstracts
ProQuest Hospital Collection (Alumni)
Biotechnology and BioEngineering Abstracts
Environmental Science Collection
ProQuest Health & Medical Complete
ProQuest One Academic UKI Edition
Environmental Science Database
Engineering Research Database
ProQuest One Academic
ProQuest One Academic (New)
ABI/INFORM Global (Corporate)
ProQuest One Business
Technology Research Database
ProQuest One Academic Middle East (New)
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest One Health & Nursing
Pollution Abstracts
ProQuest Pharma Collection
ProQuest Central
ABI/INFORM Professional Advanced
ProQuest Health & Medical Research Collection
Health and Medicine Complete (Alumni Edition)
ProQuest Central Korea
Bacteriology Abstracts (Microbiology B)
Algology Mycology and Protozoology Abstracts (Microbiology C)
Agricultural & Environmental Science Collection
ABI/INFORM Complete (Alumni Edition)
ProQuest Public Health
ABI/INFORM Global (Alumni Edition)
ProQuest Central Basic
Toxicology Abstracts
ProQuest Science Journals
ProQuest Medical Library
ProQuest One Business (Alumni)
ProQuest Central (Alumni)
Business Premium Collection (Alumni)
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList ProQuest Business Collection (Alumni Edition)
PubMed
AGRICOLA

MEDLINE - Academic
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: BENPR
  name: ProQuest Central
  url: http://www.proquest.com/pqcentral?accountid=15518
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Environmental Sciences
EISSN 1614-7499
EndPage 124340
ExternalDocumentID 37996598
10_1007_s11356_023_30774_4
Genre Journal Article
GeographicLocations Greece
GeographicLocations_xml – name: Greece
GroupedDBID ---
-5A
-5G
-5~
-BR
-EM
-Y2
-~C
.VR
06D
0R~
0VY
199
1N0
2.D
203
29G
2J2
2JN
2JY
2KG
2KM
2LR
2P1
2VQ
2~H
30V
3V.
4.4
406
408
409
40D
40E
4P2
53G
5GY
5VS
67M
67Z
6NX
78A
7WY
7X7
7XC
88E
88I
8AO
8C1
8FE
8FH
8FI
8FJ
8FL
8TC
8UJ
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAHBH
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABBXA
ABDZT
ABECU
ABFTV
ABHLI
ABHQN
ABJNI
ABJOX
ABKCH
ABMNI
ABMQK
ABNWP
ABQBU
ABQSL
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABUWG
ABWNU
ABXPI
ACAOD
ACBXY
ACDTI
ACGFO
ACGFS
ACGOD
ACHSB
ACHXU
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACPRK
ACREN
ACSNA
ACSVP
ACZOJ
ADBBV
ADHHG
ADHIR
ADINQ
ADKNI
ADKPE
ADRFC
ADTPH
ADURQ
ADYFF
ADYOE
ADZKW
AEBTG
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEUYN
AEVLU
AEXYK
AFBBN
AFGCZ
AFKRA
AFLOW
AFQWF
AFRAH
AFWTZ
AFYQB
AFZKB
AGAYW
AGDGC
AGGDS
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHMBA
AHSBF
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMTXH
AMXSW
AMYLF
AMYQR
AOCGG
ARMRJ
ASPBG
ATCPS
AVWKF
AXYYD
AYJHY
AZFZN
AZQEC
B-.
BA0
BBWZM
BDATZ
BENPR
BEZIV
BGNMA
BHPHI
BPHCQ
BSONS
BVXVI
CAG
CCPQU
COF
CS3
CSCUP
DDRTE
DL5
DNIVK
DPUIP
DU5
DWQXO
EBD
EBLON
EBS
EDH
EIOEI
EJD
ESBYG
F5P
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRNLG
FRRFC
FSGXE
FWDCC
FYUFA
GGCAI
GGRSB
GJIRD
GNUQQ
GNWQR
GQ6
GQ7
GQ8
GROUPED_ABI_INFORM_COMPLETE
GXS
H13
HCIFZ
HF~
HG5
HG6
HMCUK
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
IJ-
IKXTQ
IWAJR
IXC
IXD
IXE
IZIGR
IZQ
I~X
I~Y
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
K60
K6~
KDC
KOV
L8X
LAS
LLZTM
M0C
M1P
M2P
M4Y
MA-
ML.
N2Q
N9A
NB0
NDZJH
NF0
NPVJJ
NQJWS
NU0
O9-
O93
O9G
O9I
O9J
OAM
P19
P2P
PATMY
PF0
PQBIZ
PQBZA
PQQKQ
PROAC
PSQYO
PT4
PT5
PYCSY
Q2X
QOK
QOS
R89
R9I
RHV
RNI
RNS
ROL
RSV
RZK
S16
S1Z
S26
S27
S28
S3B
SAP
SCK
SCLPG
SDH
SEV
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
T16
TSG
TSK
TSV
TUC
TUS
U2A
U9L
UG4
UKHRP
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W23
W48
WK6
WK8
Y6R
YLTOR
Z45
Z5O
Z7R
Z7U
Z7V
Z7W
Z7X
Z7Y
Z7Z
Z81
Z83
Z85
Z86
Z87
Z8P
Z8Q
Z8S
ZMTXR
~02
~KM
AAPKM
AAYXX
ABBRH
ABDBE
ABFSG
ABRTQ
ACSTC
AEZWR
AFDZB
AFHIU
AFOHR
AHPBZ
AHWEU
AIXLP
ATHPR
AYFIA
CITATION
PHGZM
PHGZT
PJZUB
PPXIY
PUEGO
ADHKG
NPM
7QL
7SN
7T7
7TV
7U7
7XB
8FD
8FK
C1K
FR3
K9.
L.-
M7N
P64
PKEHL
PQEST
PQUKI
Q9U
7X8
7S9
L.6
ID FETCH-LOGICAL-c408t-7bcfe536e755804e13716b62aa3b225ace3039b42dce60f6a54847bac5706f203
IEDL.DBID BENPR
ISSN 1614-7499
0944-1344
IngestDate Fri Sep 05 09:46:23 EDT 2025
Thu Oct 02 06:54:23 EDT 2025
Tue Oct 07 06:44:15 EDT 2025
Thu Apr 03 07:05:21 EDT 2025
Thu Apr 24 23:02:08 EDT 2025
Wed Oct 01 04:12:32 EDT 2025
Fri Feb 21 02:40:59 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 59
Keywords Water quality forecasting
Non-dominated genetic algorithm (NSGA-II)
Single- and multi-objective optimization algorithms
Ensemble model
Deep learning (DL)
Language English
License 2023. The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c408t-7bcfe536e755804e13716b62aa3b225ace3039b42dce60f6a54847bac5706f203
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0002-3740-4389
PMID 37996598
PQID 2904823382
PQPubID 54208
PageCount 25
ParticipantIDs proquest_miscellaneous_3153555332
proquest_miscellaneous_2893834180
proquest_journals_2904823382
pubmed_primary_37996598
crossref_citationtrail_10_1007_s11356_023_30774_4
crossref_primary_10_1007_s11356_023_30774_4
springer_journals_10_1007_s11356_023_30774_4
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2023-12-01
PublicationDateYYYYMMDD 2023-12-01
PublicationDate_xml – month: 12
  year: 2023
  text: 2023-12-01
  day: 01
PublicationDecade 2020
PublicationPlace Berlin/Heidelberg
PublicationPlace_xml – name: Berlin/Heidelberg
– name: Germany
– name: Heidelberg
PublicationTitle Environmental science and pollution research international
PublicationTitleAbbrev Environ Sci Pollut Res
PublicationTitleAlternate Environ Sci Pollut Res Int
PublicationYear 2023
Publisher Springer Berlin Heidelberg
Springer Nature B.V
Publisher_xml – name: Springer Berlin Heidelberg
– name: Springer Nature B.V
References LiWWeiYAnDJiaoYWeiQLSTM-TCN: dissolved oxygen prediction in aquaculture, based on combined model of long short-term memory network and temporal convolutional networkEnviron Sci Pollut Res20222926395453955610.1007/s11356-022-18914-8
BarzegarRAsghari MoghaddamACombining the advantages of neural networks using the concept of committee machine in the groundwater salinity predictionModel Earth Syst Environ2016211310.1007/s40808-015-0072-8
Ehsani M, Moghadas Nejad F, Hajikarimi P (2022) Developing an optimized faulting prediction model in jointed plain concrete pavement using artificial neural networks and random forest methods. Intl J Pavement Eng, 1-16. https://doi.org/10.1080/10298436.2022.2057975
ChenKChenHZhouCHuangYQiXShenRLiuFZuoMZouXWangJZhangYComparative analysis of surface water quality prediction performance and identification of key water parameters using different machine learning models based on big dataWater Res20201711154541:CAS:528:DC%2BB3cXnvFWisw%3D%3D10.1016/j.watres.2019.115454
BarzegarRAsghari MoghaddamAAdamowskiJFijaniEComparison of machine learning models for predicting fluoride contamination in groundwaterStoch Env Res Risk A2017312705271810.1007/s00477-016-1338-z
HajikarimiPEhsaniMHalouiYETehraniFFAbsiJNejadFMFractional viscoelastic modeling of modified asphalt mastics using response surface methodConstr Build Mater20223171259581:CAS:528:DC%2BB38XpvVaquw%3D%3D
ZhuSHeddamSPrediction of dissolved oxygen in urban rivers at the Three Gorges Reservoir, China: extreme learning machines (ELM) versus artificial neural network (ANN)Water Qual Res J20205511061181:CAS:528:DC%2BB3cXhtVSkt7%2FE
WangGJiaQSZhouMBiJQiaoJAbusorrahAArtificial neural networks for water quality soft-sensing in wastewater treatment: a reviewArtif Intell Rev2022551565587
Boyd CE (2020) Eutrophication. Water quality: an introduction, 311-322. https://doi.org/10.1007/978-3-030-23335-8_15
Lin L, Yang H, Xu X (2022) Effects of water pollution on human health and disease heterogeneity: a review. Front Environ Sci, 975
UddinMGNashSOlbertAIA review of water quality index models and their use for assessing surface water qualityEcol Indic20211221072181:CAS:528:DC%2BB3MXkt1Ogsg%3D%3D
CaoXYaoJXuZMengDHyperspectral image classification with convolutional neural network and active learningIEEE Trans Geosci Remote Sens20205874604461610.1109/TGRS.2020.2964627
GoodfellowIBengioYCourvilleADeep learning2016MIT press
Ghadermazi P, Re A, Ricci L, Chan SHJ (2022) Metabolic engineering interventions for sustainable 2, 3-butanediol production in gas-fermenting clostridium autoethanogenum. mSystems 7(2):e01111–e01121
RizalNNMHayderGYussofSRiver water quality prediction and analysis–deep learning predictive models approachSustainability challenges and delivering practical engineering solutions: resources, materials, energy, and buildings2023ChamSpringer International Publishing252910.1007/978-3-031-26580-8_5
KatochSChauhanSSKumarVA review on genetic algorithm: past, present, and futureMultimed Tools Appl20218080918126
Graves A (2012) Sequence transduction with recurrent neural networks. arXiv preprint arXiv:1211.3711
LiLJiangPXuHLinGGuoDWuHWater quality prediction based on recurrent neural network and improved evidence theory: a case study of Qiantang river, ChinaEnviron Sci Pollut Res201926198791989610.1007/s11356-019-05116-y
PrasadDVVVenkataramanaLYKumarPSPrasannamedhaGHarshanaSSrividyaSJIndragantiSAnalysis and prediction of water quality using deep learning and auto deep learning techniquesSci Total Environ20228211533111:CAS:528:DC%2BB38XisVCjtbk%3D
NiQCaoXTanCPengWKangXAn improved graph convolutional network with feature and temporal attention for multivariate water quality predictionEnviron Sci Pollut Res20233051151611529
BarzegarRAalamiMTAdamowskiJShort-term water quality variable prediction using a hybrid CNN–LSTM deep learning modelStoch Env Res Risk A202034241543310.1007/s00477-020-01776-2
Yan T, Shen SL, Zhou A (2022) Indices and models of surface water quality assessment: review and perspectives. Environ Pollut, 119611. https://doi.org/10.1016/j.envpol.2022.119611
BarzegarRAsghari MoghaddamAAdamowskiJOzga-ZielinskiBMulti-step water quality forecasting using a boosting ensemble multi-wavelet extreme learning machine modelStoch Env Res Risk A20183279981310.1007/s00477-017-1394-z
ChenWBLiuWCArtificial neural network modeling of dissolved oxygen in reservoirEnviron Monit Assess2014186120312171:CAS:528:DC%2BC3sXhsFyrsbvJ10.1007/s10661-013-3450-6
ChapmanDVSullivanTThe role of water quality monitoring in the sustainable use of ambient watersOne Earth20225213213710.1016/j.oneear.2022.01.008
MaZSongXWanRGaoLJiangDArtificial neural network modeling of the water quality in intensive Litopenaeus vannamei shrimp tanksAquaculture20144333073121:CAS:528:DC%2BC2cXhtlaiu7%2FO10.1016/j.aquaculture.2014.06.029
CholletFDeep learning with Python2021Simon and Schuster
Sivanandam SN, Deepa SN, Sivanandam SN, Deepa SN (2008) Genetic algorithms (pp. 15-37). Springer Berlin Heidelberg
SahraeiAChamorroAKraftPBreuerLApplication of machine learning models to predict maximum event water fractions in streamflowFront Water20213652100
van der Schriek T, Giannakopoulos C, Varotsos KV (2020) The impact of future climate change on bean cultivation in the Prespa Lake catchment, northern Greece. Euro-Mediterr J Environ Integr 5:1–10
Ewuzie U, Bolade OP, Egbedina AO (2022) Application of deep learning and machine learning methods in water quality modeling and prediction: a review. Current Trends and Advances in Computer-Aided Intelligent Environmental Data Engineering, pp.185-218. https://doi.org/10.1016/B978-0-323-85597-6.00020-3
LuoWZhuSWuSDaiJComparing artificial intelligence techniques for chlorophyll-a prediction in US lakesEnviron Sci Pollut Res20192630524305321:CAS:528:DC%2BC1MXhs12rtLnK10.1007/s11356-019-06360-y
ShenCA transdisciplinary review of deep learning research and its relevance for water resources scientistsWater Resour Res201854118558859310.1029/2018WR022643
ElkiranGNouraniVAbbaSIMulti-step ahead modelling of river water quality parameters using ensemble artificial intelligence-based approachJ Hydrol20195771239621:CAS:528:DC%2BC1MXhsFarur%2FJ10.1016/j.jhydrol.2019.123962
ZhouHYanPHuangQWuDPeiJZhangLWeighted average selective ensemble strategy of deep convolutional models based on grey wolf optimizer and its application in rotating machinery fault diagnosisExpert Syst Appl2023234121076
BuiDTKhosraviKTiefenbacherJNguyenHKazakisNImproving prediction of water quality indices using novel hybrid machine-learning algorithmsSci Total Environ20207211376121:CAS:528:DC%2BB3cXkslGiu7s%3D10.1016/j.scitotenv.2020.137612
ZamaniMGNikooMRNiknazarFAl-RawasGAl-WardyMGandomiAHA multi-model data fusion methodology for reservoir water quality based on machine learning algorithms and bayesian maximum entropyJ Clean Prod2023416137885
KhosraviKGolkarianABooijMJBarzegarRSunWYaseenZMMosaviAImproving daily stochastic streamflow prediction: comparison of novel hybrid data-mining algorithmsHydrol Sci J202166914571474
MeydaniADehghanipourASchoupsGTajrishyMDaily reservoir inflow forecasting using weather forecast downscaling and rainfall-runoff modeling: application to Urmia Lake basin, IranJ Hydrol Region Stud20224410122810.1016/j.ejrh.2022.101228
ShinYKimTHongSLeeSLeeEHongSLeeCKimTParkMSParkJHeoTYPrediction of chlorophyll-a concentrations in the Nakdong river using machine learning methodsWater202012618221:CAS:528:DC%2BB3cXitlCgs7bE10.3390/w12061822
TziritisEPEnvironmental monitoring of Micro Prespa Lake basin (Western Macedonia, Greece): hydrogeochemical characteristics of water resources and quality trendsEnviron Monit Assess20141867455345681:CAS:528:DC%2BC2cXkvF2ms7g%3D
Bai S, Kolter JZ, Koltun V (2018) An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. arXiv preprint arXiv:1803.01271. https://doi.org/10.48550/arXiv.1803.01271
SakaaBElbeltagiABoudibiSChaffaïHIslamARMTKulimushiLCChoudhariPHaniABrouziyneYWongYJWater quality index modeling using random forest and improved SMO algorithm for support vector machine in Saf-Saf river basinEnviron Sci Pollut Res2022293248491485081:CAS:528:DC%2BB38Xht12mt7jI10.1007/s11356-022-18644-x
XuJAnctilFBoucherMAExploring hydrologic post-processing of ensemble streamflow forecasts based on affine kernel dressing and non-dominated sorting genetic algorithm IIHydrol Earth Syst Sci202226410011017
JiangJTangSHanDFuGSolomatineDZhengYA comprehensive review on the design and optimization of surface water quality monitoring networksEnviron Model Softw202013210479210.1016/j.envsoft.2020.104792
Gao X, Ren B, Zhang H, Sun B, Li J, Xu J, Li K (2020) An ensemble imbalanced classification method based on model dynamic selection driven by data partition hybrid sampling. Expert Syst Appl 160:113660
UddinMGRahmanANashSDigantaMTMSajibAMMoniruzzamanMOlbertAIMarine waters assessment using improved water quality model incorporating machine learning approachesJ Environ Manag20233441183681:CAS:528:DC%2BB3sXhtlykt7nM
Vinçon-LeiteBCasenaveCModelling eutrophication in lake ecosystems: a reviewSci Total Environ201965129853001
Chen X, Dai Y (2020) Research on an improved ant colony algorithm fusion with genetic algorithm for route planning. In: 2020 IEEE 4th Information technology, networking, electronic and automation control conference (ITNEC) 1:1273–1278. IEEE. https://doi.org/10.1109/ITNEC48623.2020.9084730
Barzegar R, Aalami MT, Adamowski J (2021) Coupling a hybrid CNN-LSTM deep learning model with a boundary corrected maximal overlap discrete wavelet transform for multiscale lake water level forecasting. J Hydrol 598:126196
Card D, Zhang M, Smith NA (2019) Deep weighted averaging classifiers. In Proceedings of the conference on fairness, accountability, and transparency (pp. 369-378)
SultanaFSufianADuttaPEvolution of image segmentation using deep convolutional neural network: a surveyKnowl-Based Syst202020110606210.1016/j.knosys.2020.106062
VirroHKmochAVainuMUuemaaERandom forest-based mod
LO Chua (30774_CR29) 1993; 40
R Barzegar (30774_CR7) 2020; 34
30774_CR4
ZH Zhou (30774_CR120) 2012
30774_CR5
C Ortiz-Lopez (30774_CR79) 2022; 11
T Dawood (30774_CR33) 2021; 291
30774_CR1
30774_CR2
30774_CR30
30774_CR32
NNM Rizal (30774_CR85) 2023
J Xu (30774_CR112) 2022; 26
M Dai (30774_CR31) 2022; 254
30774_CR34
30774_CR36
30774_CR37
MG Uddin (30774_CR100) 2022; 321
A Tang (30774_CR97) 2022; 46
F Zhang (30774_CR119) 2019; 74
F Chollet (30774_CR27) 2021
S Jahanshahi (30774_CR57) 2019; 64
K Greff (30774_CR52) 2016; 28
30774_CR20
H Zhou (30774_CR121) 2016; 216
G Elkiran (30774_CR39) 2019; 577
X Cao (30774_CR111) 2020; 58
W Luo (30774_CR69) 2019; 26
M Papenfus (30774_CR80) 2020; 192
30774_CR25
L Li (30774_CR63) 2019; 26
30774_CR26
MG Uddin (30774_CR104) 2023; 344
C Qi (30774_CR83) 2020; 8
H Virro (30774_CR107) 2022; 840
H Zhou (30774_CR122) 2023; 234
PL Georgescu (30774_CR47) 2023; 879
BM Haverkos (30774_CR56) 2016; 11
J Pyo (30774_CR82) 2020; 186
DE Goldberg (30774_CR49) 1989
MHDM Ribeiro (30774_CR84) 2020; 86
TY Tan (30774_CR96) 2019; 7
S Katoch (30774_CR60) 2021; 80
WB Chen (30774_CR19) 2014; 186
30774_CR93
30774_CR94
30774_CR16
30774_CR17
30774_CR12
DV Chapman (30774_CR18) 2022; 5
A El Bilali (30774_CR38) 2020; 19
30774_CR14
MG Zamani (30774_CR116) 2023; 341
LR Medsker (30774_CR72) 2001; 5
A Ly (30774_CR70) 2018; 72
A Meydani (30774_CR73) 2022; 44
TA Sinshaw (30774_CR92) 2019; 145
K Chen (30774_CR22) 2020; 171
Q Zhang (30774_CR118) 2007; 11
MG Uddin (30774_CR99) 2021; 122
MG Uddin (30774_CR102) 2023; 868
E Fijani (30774_CR42) 2019; 648
Q Ni (30774_CR76) 2023; 30
30774_CR86
C Shen (30774_CR90) 2018; 54
A Bhardwaj (30774_CR13) 2022; 29
AA Nadiri (30774_CR75) 2022; 14
Y Wang (30774_CR109) 2023; 121
W Li (30774_CR64) 2022; 29
B Vinçon-Leite (30774_CR106) 2019; 651
J Guo (30774_CR53) 2018; 85
I Goodfellow (30774_CR50) 2016
H Chen (30774_CR21) 2020; 240
MR Nikoo (30774_CR77) 2013; 27
G Wang (30774_CR108) 2022; 55
S Zhu (30774_CR124) 2020; 55
30774_CR74
MG Uddin (30774_CR103) 2023; 385
B Sakaa (30774_CR88) 2022; 29
K Deb (30774_CR35) 2002; 6
30774_CR105
MG Zamani (30774_CR114) 2022; 15
K Nova (30774_CR78) 2023; 7
DVV Prasad (30774_CR81) 2022; 821
J Schmidhuber (30774_CR89) 1997; 9
K Khosravi (30774_CR61) 2021; 66
R Barzegar (30774_CR11) 2016; 30
F Sultana (30774_CR95) 2020; 201
J Jiang (30774_CR59) 2020; 132
A Sahraei (30774_CR87) 2021; 3
30774_CR62
R Barzegar (30774_CR6) 2016; 2
30774_CR67
R Barzegar (30774_CR9) 2018; 32
Z Liang (30774_CR66) 2020; 581
P Hajikarimi (30774_CR54) 2022; 317
Z Ma (30774_CR71) 2014; 433
JS Chou (30774_CR28) 2018; 44
30774_CR113
P Liu (30774_CR68) 2019; 11
MG Uddin (30774_CR101) 2022; 219
30774_CR51
P Babuji (30774_CR3) 2023; 15
Y Shin (30774_CR91) 2020; 12
DL Hall (30774_CR55) 1997; 85
R Barzegar (30774_CR10) 2019; 577
L Chen (30774_CR24) 2023; 146
30774_CR58
DT Bui (30774_CR15) 2020; 721
L Chen (30774_CR23) 2023; 146
MG Zamani (30774_CR115) 2023; 416
30774_CR123
X Li (30774_CR65) 2017; 9
30774_CR41
J Wu (30774_CR110) 2022; 14
30774_CR43
R Barzegar (30774_CR8) 2017; 31
30774_CR44
30774_CR40
EP Tziritis (30774_CR98) 2014; 186
30774_CR45
30774_CR46
30774_CR48
30774_CR117
References_xml – reference: LiangZZouRChenXRenTSuHLiuYSimulate the forecast capacity of a complicated water quality model using the long short-term memory approachJ Hydrol20205811244321:CAS:528:DC%2BC1MXisVygur7I10.1016/j.jhydrol.2019.124432
– reference: ZamaniMGNikooMRNiknazarFAl-RawasGAl-WardyMGandomiAHA multi-model data fusion methodology for reservoir water quality based on machine learning algorithms and bayesian maximum entropyJ Clean Prod2023416137885
– reference: ZhangFLiJShenQZhangBTianLYeHWangSLuZA soft-classification-based chlorophyll-a estimation method using MERIS data in the highly turbid and eutrophic Taihu LakeInt J Appl Earth Obs Geoinf20197413814910.1016/j.jag.2018.07.018
– reference: ChouJSHoCCHoangHSDetermining quality of water in reservoir using machine learningEcological Inform201844577510.1016/j.ecoinf.2018.01.005
– reference: Graves A (2012) Sequence transduction with recurrent neural networks. arXiv preprint arXiv:1211.3711
– reference: BabujiPThirumalaisamySDuraisamyKPeriyasamyGHuman health risks due to exposure to water pollution: a reviewWater2023151425321:CAS:528:DC%2BB3sXhs1Knur3F10.3390/w15142532
– reference: Farshbaf Aghajani H, Karimi S, Hatefi Diznab M (2023) An experimental and machine-learning investigation into compaction of the cemented sand-gravel mixtures and influencing factors. Transp Infrastruct Geotechnol 10(5):816–855
– reference: KatochSChauhanSSKumarVA review on genetic algorithm: past, present, and futureMultimed Tools Appl20218080918126
– reference: Vinçon-LeiteBCasenaveCModelling eutrophication in lake ecosystems: a reviewSci Total Environ201965129853001
– reference: LiuPWangJSangaiahAKXieYYinXAnalysis and prediction of water quality using LSTM deep neural networks in IoT environmentSustainability201911720581:CAS:528:DC%2BB3cXjsVCnsLk%3D10.3390/su11072058
– reference: Zounemat-Kermani M, Batelaan O, Fadaee M, Hinkelmann R (2021) Ensemble machine learning paradigms in hydrology: a review. J Hydrol 598:126266
– reference: NadiriAASedghiZBarzegarRNikooMREstablishing a data fusion water resources risk map based on aggregating drinking water quality and human health risk indicesWater2022142133901:CAS:528:DC%2BB38XivFehs7zJ10.3390/w14213390
– reference: Cho K, Van Merriënboer B, Gulcehre C, Bahdanau D, Bougares F, Schwenk H, Bengio Y (2014) Learning phrase representations using RNN encoder-decoder for statistical machine translation. arXiv preprint arXiv: 1406.1078. https://doi.org/10.48550/arXiv.1406.1078
– reference: Dargi M, Khamehchi E, Mahdavi Kalatehno J (2023) Optimizing acidizing design and effectiveness assessment with machine learning for predicting post-acidizing permeability. Sci Rep 13(1):11851
– reference: MedskerLRJainLCRecurrent neural networksDesign Appl200156467
– reference: LiWWeiYAnDJiaoYWeiQLSTM-TCN: dissolved oxygen prediction in aquaculture, based on combined model of long short-term memory network and temporal convolutional networkEnviron Sci Pollut Res20222926395453955610.1007/s11356-022-18914-8
– reference: ShinYKimTHongSLeeSLeeEHongSLeeCKimTParkMSParkJHeoTYPrediction of chlorophyll-a concentrations in the Nakdong river using machine learning methodsWater202012618221:CAS:528:DC%2BB3cXitlCgs7bE10.3390/w12061822
– reference: Gao X, Ren B, Zhang H, Sun B, Li J, Xu J, Li K (2020) An ensemble imbalanced classification method based on model dynamic selection driven by data partition hybrid sampling. Expert Syst Appl 160:113660
– reference: Barzegar R, Aalami MT, Adamowski J (2021) Coupling a hybrid CNN-LSTM deep learning model with a boundary corrected maximal overlap discrete wavelet transform for multiscale lake water level forecasting. J Hydrol 598:126196
– reference: Lin L, Yang H, Xu X (2022) Effects of water pollution on human health and disease heterogeneity: a review. Front Environ Sci, 975
– reference: SakaaBElbeltagiABoudibiSChaffaïHIslamARMTKulimushiLCChoudhariPHaniABrouziyneYWongYJWater quality index modeling using random forest and improved SMO algorithm for support vector machine in Saf-Saf river basinEnviron Sci Pollut Res2022293248491485081:CAS:528:DC%2BB38Xht12mt7jI10.1007/s11356-022-18644-x
– reference: Bahrami M, Talebbeydokhti N, Rakhshandehroo G, Nikoo MR, Adamowski JF (2023) A fusion-based data assimilation framework for runoff prediction considering multiple sources of precipitation. Hydrological Sciences Journal, (just-accepted). https://doi.org/10.1080/02626667.2023.2180375
– reference: BarzegarRAsghari MoghaddamAAdamowskiJOzga-ZielinskiBMulti-step water quality forecasting using a boosting ensemble multi-wavelet extreme learning machine modelStoch Env Res Risk A20183279981310.1007/s00477-017-1394-z
– reference: GeorgescuPLMoldovanuSIticescuCCalmucMCalmucVTopaCMoraruLAssessing and forecasting water quality in the Danube river by using neural network approachesSci Total Environ20238791629981:CAS:528:DC%2BB3sXms1Oks70%3D
– reference: Géron A (2022) Hands-on machine learning with Scikit-Learn, Keras, and TensorFlow. O'Reilly Media, Inc.
– reference: MaZSongXWanRGaoLJiangDArtificial neural network modeling of the water quality in intensive Litopenaeus vannamei shrimp tanksAquaculture20144333073121:CAS:528:DC%2BC2cXhtlaiu7%2FO10.1016/j.aquaculture.2014.06.029
– reference: TanTYZhangLLimCPFieldingBYuYAndersonEEvolving ensemble models for image segmentation using enhanced particle swarm optimizationIEEE access201973400434019
– reference: Fu Y, Hu Z, Zhao Y, Huang M (2021) A long-term water quality prediction method based on the temporal convolutional network in smart mariculture. Water, 13(20), p.2907. https://doi.org/10.3390/w13202907
– reference: LuoWZhuSWuSDaiJComparing artificial intelligence techniques for chlorophyll-a prediction in US lakesEnviron Sci Pollut Res20192630524305321:CAS:528:DC%2BC1MXhs12rtLnK10.1007/s11356-019-06360-y
– reference: JahanshahiSKerachianRAn evidential reasoning-based sustainability index for water resources managementHydrol Sci J201964101223123910.1080/02626667.2019.1628347
– reference: ChenKChenHZhouCHuangYQiXShenRLiuFZuoMZouXWangJZhangYComparative analysis of surface water quality prediction performance and identification of key water parameters using different machine learning models based on big dataWater Res20201711154541:CAS:528:DC%2BB3cXnvFWisw%3D%3D10.1016/j.watres.2019.115454
– reference: GuoJZhangCZhengGXueJZhangLThe establishment of season-specific eutrophication assessment standards for a water-supply reservoir located in Northeast China based on chlorophyll-a levelsEcol Indic20188511201:CAS:528:DC%2BC2sXhs1yrsL3E10.1016/j.ecolind.2017.09.056
– reference: Carcano EC, Bartolini P, Muselli M, Piroddi L (2008) Jordan recurrent neural network versus IHACRES in modelling daily streamflows. J Hydrol 362(3-4):291–307
– reference: El BilaliATalebAPrediction of irrigation water quality parameters using machine learning models in a semi-arid environmentJ Saudi Soc Agric Sci202019743945110.1016/j.jssas.2020.08.001
– reference: BarzegarRAsghari MoghaddamACombining the advantages of neural networks using the concept of committee machine in the groundwater salinity predictionModel Earth Syst Environ2016211310.1007/s40808-015-0072-8
– reference: BuiDTKhosraviKTiefenbacherJNguyenHKazakisNImproving prediction of water quality indices using novel hybrid machine-learning algorithmsSci Total Environ20207211376121:CAS:528:DC%2BB3cXkslGiu7s%3D10.1016/j.scitotenv.2020.137612
– reference: BarzegarRGhasriMQiZQuiltyJAdamowskiJUsing bootstrap ELM and LSSVM models to estimate river ice thickness in the Mackenzie river basin in the Northwest Territories, CanadaJ Hydrol2019577123903
– reference: ZhouHYanPHuangQWuDPeiJZhangLWeighted average selective ensemble strategy of deep convolutional models based on grey wolf optimizer and its application in rotating machinery fault diagnosisExpert Syst Appl2023234121076
– reference: Boyd CE (2020) Eutrophication. Water quality: an introduction, 311-322. https://doi.org/10.1007/978-3-030-23335-8_15
– reference: ZhuSHeddamSPrediction of dissolved oxygen in urban rivers at the Three Gorges Reservoir, China: extreme learning machines (ELM) versus artificial neural network (ANN)Water Qual Res J20205511061181:CAS:528:DC%2BB3cXhtVSkt7%2FE
– reference: WangGJiaQSZhouMBiJQiaoJAbusorrahAArtificial neural networks for water quality soft-sensing in wastewater treatment: a reviewArtif Intell Rev2022551565587
– reference: SahraeiAChamorroAKraftPBreuerLApplication of machine learning models to predict maximum event water fractions in streamflowFront Water20213652100
– reference: SchmidhuberJHochreiterSLong short-term memoryNeural Comput1997981735178010.1162/neco.1997.9.8.1735
– reference: ElkiranGNouraniVAbbaSIMulti-step ahead modelling of river water quality parameters using ensemble artificial intelligence-based approachJ Hydrol20195771239621:CAS:528:DC%2BC1MXhsFarur%2FJ10.1016/j.jhydrol.2019.123962
– reference: BhardwajADagarVKhanMOAggarwalAAlvaradoRKumarMProshadRSmart IoT and machine learning-based framework for water quality assessment and device component monitoringEnviron Sci Pollut Res202229304601846036
– reference: ZhangQLiHMOEA/D: a multiobjective evolutionary algorithm based on decompositionIEEE Trans Evol Comput2007116712731
– reference: ChenLWuTWangZLinXCaiYA novel hybrid BPNN model based on adaptive evolutionary artificial bee colony algorithm for water quality index predictionEcol Indic20231461098821:CAS:528:DC%2BB3sXoslGhtA%3D%3D
– reference: CholletFDeep learning with Python2021Simon and Schuster
– reference: GoldbergDEGenetic algorithms in search, optimization, and machine learning1989Addison-Wesley
– reference: RizalNNMHayderGYussofSRiver water quality prediction and analysis–deep learning predictive models approachSustainability challenges and delivering practical engineering solutions: resources, materials, energy, and buildings2023ChamSpringer International Publishing252910.1007/978-3-031-26580-8_5
– reference: BarzegarRMoghaddamAABaghbanHA supervised committee machine artificial intelligent for improving DRASTIC method to assess groundwater contamination risk: a case study from Tabriz plain aquifer, IranStoch Env Res Risk A201630883899
– reference: Dehghani R, Torabi Poudeh H, Izadi Z (2021) Dissolved oxygen concentration predictions for running waters with using hybrid machine learning techniques. Modeling Earth Systems and Environment, pp.1-15. https://doi.org/10.1007/s40808-021-01253-x
– reference: LiXShaJWangZLChlorophyll-a prediction of lakes with different water quality patterns in China based on hybrid neural networksWater2017975241:CAS:528:DC%2BC1cXitlSmt7%2FJ10.3390/w9070524
– reference: WangYKhodadadzadehMZurita-MillaRSpatial+: a new cross-validation method to evaluate geospatial machine learning modelsInt J Appl Earth Obs Geoinf202312110336410.1016/j.jag.2023.103364
– reference: DebKPratapAAgarwalSMeyarivanTAMTA fast and elitist multiobjective genetic algorithm: NSGA-IIIEEE Trans Evol Comput200262182197
– reference: SultanaFSufianADuttaPEvolution of image segmentation using deep convolutional neural network: a surveyKnowl-Based Syst202020110606210.1016/j.knosys.2020.106062
– reference: ChenLWuTWangZLinXCaiYA novel hybrid BPNN model based on adaptive evolutionary artificial bee colony algorithm for water quality index predictionEcol Indic20231461098821:CAS:528:DC%2BB3sXoslGhtA%3D%3D10.1016/j.ecolind.2023.109882
– reference: Mirjalili S, Mirjalili S (2019) Genetic algorithm. Evolutionary algorithms and neural networks: theory and applications, 43-55. https://doi.org/10.1007/978-3-319-93025-1_4
– reference: Yan T, Shen SL, Zhou A (2022) Indices and models of surface water quality assessment: review and perspectives. Environ Pollut, 119611. https://doi.org/10.1016/j.envpol.2022.119611
– reference: HajikarimiPEhsaniMHalouiYETehraniFFAbsiJNejadFMFractional viscoelastic modeling of modified asphalt mastics using response surface methodConstr Build Mater20223171259581:CAS:528:DC%2BB38XpvVaquw%3D%3D
– reference: LiLJiangPXuHLinGGuoDWuHWater quality prediction based on recurrent neural network and improved evidence theory: a case study of Qiantang river, ChinaEnviron Sci Pollut Res201926198791989610.1007/s11356-019-05116-y
– reference: FijaniEBarzegarRDeoRTziritisESkordasKDesign and implementation of a hybrid model based on two-layer decomposition method coupled with extreme learning machines to support real-time environmental monitoring of water quality parametersSci Total Environ20196488398531:CAS:528:DC%2BC1cXhsFGqsLrE10.1016/j.scitotenv.2018.08.221
– reference: XuJAnctilFBoucherMAExploring hydrologic post-processing of ensemble streamflow forecasts based on affine kernel dressing and non-dominated sorting genetic algorithm IIHydrol Earth Syst Sci202226410011017
– reference: NiQCaoXTanCPengWKangXAn improved graph convolutional network with feature and temporal attention for multivariate water quality predictionEnviron Sci Pollut Res20233051151611529
– reference: Gaya MS, Abba SI, Abdu AM, Tukur AI, Saleh MA, Esmaili P, Wahab NA (2020) Estimation of water quality index using artificial intelligence approaches and multi-linear regression. Int. J. Artif. Intell. ISSN, 2252, 8938
– reference: UddinMGRahmanANashSDigantaMTMSajibAMMoniruzzamanMOlbertAIMarine waters assessment using improved water quality model incorporating machine learning approachesJ Environ Manag20233441183681:CAS:528:DC%2BB3sXhtlykt7nM
– reference: DaiMYangHYangFZhangZYuYLiuGFengXMulti-strategy Ensemble Non-dominated sorting genetic Algorithm-II (MENSGA-II) and application in energy-enviro-economic multi-objective optimization of separation for isopropyl alcohol/diisopropyl ether/water mixtureEnergy20222541243761:CAS:528:DC%2BB38XitFSru7%2FP
– reference: TziritisEPEnvironmental monitoring of Micro Prespa Lake basin (Western Macedonia, Greece): hydrogeochemical characteristics of water resources and quality trendsEnviron Monit Assess20141867455345681:CAS:528:DC%2BC2cXkvF2ms7g%3D
– reference: VirroHKmochAVainuMUuemaaERandom forest-based modeling of stream nutrients at national level in a data-scarce regionSci Total Environ20228401566131:CAS:528:DC%2BB38XhsFyhurnL
– reference: van der Schriek T, Giannakopoulos C, Varotsos KV (2020) The impact of future climate change on bean cultivation in the Prespa Lake catchment, northern Greece. Euro-Mediterr J Environ Integr 5:1–10
– reference: PapenfusMSchaefferBPollardAILoftinKExploring the potential value of satellite remote sensing to monitor chlorophyll-a for US lakes and reservoirsEnviron Monit Assess2020192128081:CAS:528:DC%2BB3MXosVers74%3D10.1007/s10661-020-08631-5
– reference: QiCHuangSWangXMonitoring water quality parameters of Taihu lake based on remote sensing images and LSTM-RNNIEEE Access20208188068188081
– reference: UddinMGNashSOlbertAIA review of water quality index models and their use for assessing surface water qualityEcol Indic20211221072181:CAS:528:DC%2BB3MXkt1Ogsg%3D%3D
– reference: Song Y, Shen C, Wang Y (2023) Multi-objective optimal reservoir operation considering algal bloom control in reservoirs. J Environ Manage 344:118436
– reference: Rozinajová V, Ezzeddine AB, Lóderer M, Loebl J, Magyar R, Vrablecová P (2018) Computational intelligence in smart grid environment. In Computational intelligence for multimedia big data on the cloud with engineering Applications (pp. 23-59). Academic Press. https://doi.org/10.1016/B978-0-12-813314-9.00002-5
– reference: Choi JH, Kim J, Won J, Min O (2019) Modelling chlorophyll-a concentration using deep neural networks considering extreme data imbalance and skewness. In 2019 21st International Conference on Advanced Communication Technology (ICACT) (pp. 631-634). IEEE. https://doi.org/10.23919/ICACT.2019.8702027
– reference: Bai S, Kolter JZ, Koltun V (2018) An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. arXiv preprint arXiv:1803.01271. https://doi.org/10.48550/arXiv.1803.01271
– reference: UddinMGNashSDigantaMTMRahmanAOlbertAIRobust machine learning algorithms for predicting coastal water quality indexJ Environ Manag2022321115923
– reference: Ortiz-LopezCBouchardCRodriguezMMachine learning models with potential application to predict source water quality for treatment purposes: a critical reviewEnviron Technol Rev20221111181471:CAS:528:DC%2BB38XisFegs7jO10.1080/21622515.2022.2118084
– reference: Card D, Zhang M, Smith NA (2019) Deep weighted averaging classifiers. In Proceedings of the conference on fairness, accountability, and transparency (pp. 369-378)
– reference: JiangJTangSHanDFuGSolomatineDZhengYA comprehensive review on the design and optimization of surface water quality monitoring networksEnviron Model Softw202013210479210.1016/j.envsoft.2020.104792
– reference: UddinMGNashSRahmanAOlbertAIA sophisticated model for rating water qualitySci Total Environ20238681616141:CAS:528:DC%2BB3sXhvFGhsLk%3D
– reference: Jahanshahi S, Kerachian R, Emamjomehzadeh O (2023) A leader-follower framework for sustainable water pricing and allocation. Water Resour Manage 1-18. https://doi.org/10.1007/s11269-023-03428-w
– reference: Babatunde OH, Armstrong L, Leng J, Diepeveen D (2014) A genetic algorithm-based feature selection. http://ro.ecu.edu.au/theses/1733
– reference: Azizi K, Diko SK, Saija L, Zamani MG, Meier CI (2022) Integrated community-based approaches to urban pluvial flooding research, trends and future directions: A review. Urban Clim 44:101237
– reference: ChenHChenAXuLXieHQiaoHLinQCaiKA deep learning CNN architecture applied in smart near-infrared analysis of water pollution for agricultural irrigation resourcesAgric Water Manag202024010630310.1016/j.agwat.2020.106303
– reference: Ewuzie U, Bolade OP, Egbedina AO (2022) Application of deep learning and machine learning methods in water quality modeling and prediction: a review. Current Trends and Advances in Computer-Aided Intelligent Environmental Data Engineering, pp.185-218. https://doi.org/10.1016/B978-0-323-85597-6.00020-3
– reference: ZamaniMGMoridiAYazdiJGroundwater management in arid and semi-arid regionsArab J Geosci202215436210.1007/s12517-022-09546-w
– reference: NikooMRKarimiAKerachianRPoorsepahy-SamianHDaneshmandFRules for optimal operation of reservoir-river-groundwater systems considering water quality targets: application of M5P modelWater Resour Manag2013272771278410.1007/s11269-013-0314-3
– reference: ChenWBLiuWCArtificial neural network modeling of dissolved oxygen in reservoirEnviron Monit Assess2014186120312171:CAS:528:DC%2BC3sXhsFyrsbvJ10.1007/s10661-013-3450-6
– reference: Kouadri S, Pande CB, Panneerselvam B, Moharir KN, Elbeltagi A (2021) Prediction of irrigation groundwater quality parameters using ANN, LSTM, and MLR models. Environ Sci Pollut Res, 1-25. https://doi.org/10.1007/s11356-021-17084-3
– reference: ZamaniMGNikooMRRastadDNematollahiBA comparative study of data-driven models for runoff, sediment, and nitrate forecastingJ Environ Manag20233411180061:CAS:528:DC%2BB3sXpsFyhtb4%3D10.1016/j.jenvman.2023.118006
– reference: BarzegarRAalamiMTAdamowskiJShort-term water quality variable prediction using a hybrid CNN–LSTM deep learning modelStoch Env Res Risk A202034241543310.1007/s00477-020-01776-2
– reference: SinshawTASurbeckCQYasarerHNajjarYArtificial neural network for prediction of total nitrogen and phosphorus in US lakesJ Environ Eng20191456040190321:CAS:528:DC%2BC1MXhtVOhs73P10.1061/(ASCE)EE.1943-7870.0001528
– reference: CaoXYaoJXuZMengDHyperspectral image classification with convolutional neural network and active learningIEEE Trans Geosci Remote Sens20205874604461610.1109/TGRS.2020.2964627
– reference: Chen X, Dai Y (2020) Research on an improved ant colony algorithm fusion with genetic algorithm for route planning. In: 2020 IEEE 4th Information technology, networking, electronic and automation control conference (ITNEC) 1:1273–1278. IEEE. https://doi.org/10.1109/ITNEC48623.2020.9084730
– reference: GoodfellowIBengioYCourvilleADeep learning2016MIT press
– reference: MeydaniADehghanipourASchoupsGTajrishyMDaily reservoir inflow forecasting using weather forecast downscaling and rainfall-runoff modeling: application to Urmia Lake basin, IranJ Hydrol Region Stud20224410122810.1016/j.ejrh.2022.101228
– reference: ZhouHDengZXiaYFuMA new sampling method in particle filter based on Pearson correlation coefficientNeurocomputing2016216208215
– reference: UddinMGNashSRahmanAOlbertAIAssessing optimization techniques for improving water quality modelJ Clean Prod2023385135671
– reference: ZhouZHEnsemble methods: foundations and algorithms2012CRC press
– reference: BarzegarRAsghari MoghaddamAAdamowskiJFijaniEComparison of machine learning models for predicting fluoride contamination in groundwaterStoch Env Res Risk A2017312705271810.1007/s00477-016-1338-z
– reference: Ghadermazi P, Re A, Ricci L, Chan SHJ (2022) Metabolic engineering interventions for sustainable 2, 3-butanediol production in gas-fermenting clostridium autoethanogenum. mSystems 7(2):e01111–e01121
– reference: Ehsani M, Moghadas Nejad F, Hajikarimi P (2022) Developing an optimized faulting prediction model in jointed plain concrete pavement using artificial neural networks and random forest methods. Intl J Pavement Eng, 1-16. https://doi.org/10.1080/10298436.2022.2057975
– reference: ChapmanDVSullivanTThe role of water quality monitoring in the sustainable use of ambient watersOne Earth20225213213710.1016/j.oneear.2022.01.008
– reference: NovaKAI-enabled water management systems: an analysis of system components and interdependencies for water conservationEigenpub Rev Sci Technol202371105124https://studies.eigenpub.com/index.php/erst/article/view/12
– reference: RibeiroMHDMdos Santos CoelhoLEnsemble approach based on bagging, boosting and stacking for short-term prediction in agribusiness time seriesAppl Soft Comput202086105837
– reference: PrasadDVVVenkataramanaLYKumarPSPrasannamedhaGHarshanaSSrividyaSJIndragantiSAnalysis and prediction of water quality using deep learning and auto deep learning techniquesSci Total Environ20228211533111:CAS:528:DC%2BB38XisVCjtbk%3D
– reference: GreffKSrivastavaRKKoutníkJSteunebrinkBRSchmidhuberJLSTM: A search space odysseyIEEE Trans Neural Netw Learn Syst2016281022222232
– reference: Sivanandam SN, Deepa SN, Sivanandam SN, Deepa SN (2008) Genetic algorithms (pp. 15-37). Springer Berlin Heidelberg
– reference: Deb K, Agrawal S, Pratap A, Meyarivan T (2000) A fast elitist non-dominated sorting genetic algorithm for multi-objective optimization: NSGA-II. In Parallel Problem Solving from Nature PPSN VI: 6th International Conference Paris, France, September 18–20, 2000 Proceedings 6 (pp. 849-858). Springer Berlin Heidelberg. https://doi.org/10.1007/3-540-45356-3_83
– reference: HallDLLlinasJAn introduction to multisensor data fusionProc IEEE199785162310.1109/5.554205
– reference: ShenCA transdisciplinary review of deep learning research and its relevance for water resources scientistsWater Resour Res201854118558859310.1029/2018WR022643
– reference: TangAWangCZhangDZhangKZhouYZhangZA multi-model real covariance-based battery state-of-charge fusion estimation method for electric vehicles using ordered weighted averaging operatorInt J Energy Res202246121727317284
– reference: WuJWangZA hybrid model for water quality prediction based on an artificial neural network, wavelet transform, and long short-term memoryWater20221446101:CAS:528:DC%2BB38XosVOhsbs%3D10.3390/w14040610
– reference: HaverkosBMPanZGruAAFreudAGRabinovitchRXu-WelliverMPorcuPExtranodal NK/T cell lymphoma, nasal type (ENKTL-NT): an update on epidemiology, clinical presentation, and natural history in North American and European casesCurr Hematol Malignancy Reports201611514527
– reference: KhosraviKGolkarianABooijMJBarzegarRSunWYaseenZMMosaviAImproving daily stochastic streamflow prediction: comparison of novel hybrid data-mining algorithmsHydrol Sci J202166914571474
– reference: Zamani MG, Saniei K, Nematollahi B, Zahmatkesh Z, Poor MM, Nikoo MR (2023c) Developing sustainable strategies by LID optimization in response to annual climate change impacts. J Clean Prod 416:137931
– reference: ChuaLORoskaTThe CNN paradigmIEEE Trans Circuits Syst I: Fundamental Theory Appl1993403147156
– reference: LyAMarsmanMWagenmakersEJAnalytic posteriors for Pearson’s correlation coefficientStatistica Neerlandica2018721413
– reference: DawoodTElwakilENovoaHMDelgadoJFGToward urban sustainability and clean potable water: prediction of water quality via artificial neural networksJ Clean Prod20212911252661:CAS:528:DC%2BB3cXisVGktrfE
– reference: Chung J, Gulcehre C, Cho K, Bengio Y (2014) Empirical evaluation of gated recurrent neural networks on sequence modeling. arXiv preprint arXiv:1412.3555
– reference: UddinMGNashSRahmanAOlbertAIA comprehensive method for improvement of water quality index (WQI) models for coastal water quality assessmentWater Res20222191185321:CAS:528:DC%2BB38Xht1ansLrF
– reference: PyoJParkLJPachepskyYBaekSSKimKChoKHUsing convolutional neural network for predicting cyanobacteria concentrations in river waterWater Res20201861163491:CAS:528:DC%2BB3cXhslehs7rL10.1016/j.watres.2020.116349
– volume: 44
  start-page: 57
  year: 2018
  ident: 30774_CR28
  publication-title: Ecological Inform
  doi: 10.1016/j.ecoinf.2018.01.005
– volume: 74
  start-page: 138
  year: 2019
  ident: 30774_CR119
  publication-title: Int J Appl Earth Obs Geoinf
  doi: 10.1016/j.jag.2018.07.018
– ident: 30774_CR123
  doi: 10.1016/j.jhydrol.2021.126266
– volume: 5
  start-page: 64
  year: 2001
  ident: 30774_CR72
  publication-title: Design Appl
– ident: 30774_CR105
  doi: 10.1007/s41207-020-0151-8
– volume: 291
  start-page: 125266
  year: 2021
  ident: 30774_CR33
  publication-title: J Clean Prod
  doi: 10.1016/j.jclepro.2020.125266
– volume: 14
  start-page: 3390
  issue: 21
  year: 2022
  ident: 30774_CR75
  publication-title: Water
  doi: 10.3390/w14213390
– volume-title: Genetic algorithms in search, optimization, and machine learning
  year: 1989
  ident: 30774_CR49
– volume: 122
  start-page: 107218
  year: 2021
  ident: 30774_CR99
  publication-title: Ecol Indic
  doi: 10.1016/j.ecolind.2020.107218
– volume: 201
  start-page: 106062
  year: 2020
  ident: 30774_CR95
  publication-title: Knowl-Based Syst
  doi: 10.1016/j.knosys.2020.106062
– volume: 344
  start-page: 118368
  year: 2023
  ident: 30774_CR104
  publication-title: J Environ Manag
  doi: 10.1016/j.jenvman.2023.118368
– volume: 29
  start-page: 39545
  issue: 26
  year: 2022
  ident: 30774_CR64
  publication-title: Environ Sci Pollut Res
  doi: 10.1007/s11356-022-18914-8
– volume: 11
  start-page: 712
  issue: 6
  year: 2007
  ident: 30774_CR118
  publication-title: IEEE Trans Evol Comput
  doi: 10.1109/TEVC.2007.892759
– volume: 26
  start-page: 19879
  year: 2019
  ident: 30774_CR63
  publication-title: Environ Sci Pollut Res
  doi: 10.1007/s11356-019-05116-y
– volume: 192
  start-page: 808
  issue: 12
  year: 2020
  ident: 30774_CR80
  publication-title: Environ Monit Assess
  doi: 10.1007/s10661-020-08631-5
– volume: 30
  start-page: 11516
  issue: 5
  year: 2023
  ident: 30774_CR76
  publication-title: Environ Sci Pollut Res
  doi: 10.1007/s11356-022-22719-0
– ident: 30774_CR93
  doi: 10.1007/978-3-540-73190-0_2
– volume: 11
  start-page: 514
  year: 2016
  ident: 30774_CR56
  publication-title: Curr Hematol Malignancy Reports
  doi: 10.1007/s11899-016-0355-9
– start-page: 25
  volume-title: Sustainability challenges and delivering practical engineering solutions: resources, materials, energy, and buildings
  year: 2023
  ident: 30774_CR85
  doi: 10.1007/978-3-031-26580-8_5
– volume: 577
  start-page: 123903
  year: 2019
  ident: 30774_CR10
  publication-title: J Hydrol
  doi: 10.1016/j.jhydrol.2019.06.075
– volume: 31
  start-page: 2705
  year: 2017
  ident: 30774_CR8
  publication-title: Stoch Env Res Risk A
  doi: 10.1007/s00477-016-1338-z
– ident: 30774_CR4
  doi: 10.1080/02626667.2023.2180375
– ident: 30774_CR62
  doi: 10.1007/s11356-021-17084-3
– volume: 34
  start-page: 415
  issue: 2
  year: 2020
  ident: 30774_CR7
  publication-title: Stoch Env Res Risk A
  doi: 10.1007/s00477-020-01776-2
– ident: 30774_CR67
  doi: 10.3389/fenvs.2022.880246
– volume: 29
  start-page: 46018
  issue: 30
  year: 2022
  ident: 30774_CR13
  publication-title: Environ Sci Pollut Res
  doi: 10.1007/s11356-022-19014-3
– volume-title: Deep learning
  year: 2016
  ident: 30774_CR50
– volume: 64
  start-page: 1223
  issue: 10
  year: 2019
  ident: 30774_CR57
  publication-title: Hydrol Sci J
  doi: 10.1080/02626667.2019.1628347
– volume: 7
  start-page: 34004
  year: 2019
  ident: 30774_CR96
  publication-title: IEEE access
  doi: 10.1109/ACCESS.2019.2903015
– ident: 30774_CR2
– volume: 186
  start-page: 1203
  year: 2014
  ident: 30774_CR19
  publication-title: Environ Monit Assess
  doi: 10.1007/s10661-013-3450-6
– ident: 30774_CR45
  doi: 10.11591/ijai.v9.i1.pp126-134
– volume: 32
  start-page: 799
  year: 2018
  ident: 30774_CR9
  publication-title: Stoch Env Res Risk A
  doi: 10.1007/s00477-017-1394-z
– ident: 30774_CR40
  doi: 10.1016/B978-0-323-85597-6.00020-3
– ident: 30774_CR46
  doi: 10.1128/msystems.01111-21
– ident: 30774_CR17
  doi: 10.1145/3287560.3287595
– ident: 30774_CR26
  doi: 10.23919/ICACT.2019.8702027
– volume: 868
  start-page: 161614
  year: 2023
  ident: 30774_CR102
  publication-title: Sci Total Environ
  doi: 10.1016/j.scitotenv.2023.161614
– volume: 15
  start-page: 362
  issue: 4
  year: 2022
  ident: 30774_CR114
  publication-title: Arab J Geosci
  doi: 10.1007/s12517-022-09546-w
– volume: 146
  start-page: 109882
  year: 2023
  ident: 30774_CR23
  publication-title: Ecol Indic
  doi: 10.1016/j.ecolind.2023.109882
– volume: 879
  start-page: 162998
  year: 2023
  ident: 30774_CR47
  publication-title: Sci Total Environ
  doi: 10.1016/j.scitotenv.2023.162998
– ident: 30774_CR5
  doi: 10.48550/arXiv.1803.01271
– volume: 9
  start-page: 1735
  issue: 8
  year: 1997
  ident: 30774_CR89
  publication-title: Neural Comput
  doi: 10.1162/neco.1997.9.8.1735
– volume: 240
  start-page: 106303
  year: 2020
  ident: 30774_CR21
  publication-title: Agric Water Manag
  doi: 10.1016/j.agwat.2020.106303
– volume: 186
  start-page: 4553
  issue: 7
  year: 2014
  ident: 30774_CR98
  publication-title: Environ Monit Assess
  doi: 10.1007/s10661-014-3719-4
– volume: 121
  start-page: 103364
  year: 2023
  ident: 30774_CR109
  publication-title: Int J Appl Earth Obs Geoinf
  doi: 10.1016/j.jag.2023.103364
– volume: 9
  start-page: 524
  issue: 7
  year: 2017
  ident: 30774_CR65
  publication-title: Water
  doi: 10.3390/w9070524
– volume: 40
  start-page: 147
  issue: 3
  year: 1993
  ident: 30774_CR29
  publication-title: IEEE Trans Circuits Syst I: Fundamental Theory Appl
  doi: 10.1109/81.222795
– volume: 11
  start-page: 2058
  issue: 7
  year: 2019
  ident: 30774_CR68
  publication-title: Sustainability
  doi: 10.3390/su11072058
– volume: 6
  start-page: 182
  issue: 2
  year: 2002
  ident: 30774_CR35
  publication-title: IEEE Trans Evol Comput
  doi: 10.1109/4235.996017
– volume-title: Deep learning with Python
  year: 2021
  ident: 30774_CR27
– volume: 12
  start-page: 1822
  issue: 6
  year: 2020
  ident: 30774_CR91
  publication-title: Water
  doi: 10.3390/w12061822
– ident: 30774_CR74
  doi: 10.1007/978-3-319-93025-1_4
– volume: 321
  start-page: 115923
  year: 2022
  ident: 30774_CR100
  publication-title: J Environ Manag
  doi: 10.1016/j.jenvman.2022.115923
– ident: 30774_CR86
  doi: 10.1016/B978-0-12-813314-9.00002-5
– volume: 145
  start-page: 04019032
  issue: 6
  year: 2019
  ident: 30774_CR92
  publication-title: J Environ Eng
  doi: 10.1061/(ASCE)EE.1943-7870.0001528
– volume: 58
  start-page: 4604
  issue: 7
  year: 2020
  ident: 30774_CR111
  publication-title: IEEE Trans Geosci Remote Sens
  doi: 10.1109/TGRS.2020.2964627
– volume: 234
  start-page: 121076
  year: 2023
  ident: 30774_CR122
  publication-title: Expert Syst Appl
  doi: 10.1016/j.eswa.2023.121076
– volume: 2
  start-page: 1
  year: 2016
  ident: 30774_CR6
  publication-title: Model Earth Syst Environ
  doi: 10.1007/s40808-015-0072-8
– volume: 171
  start-page: 115454
  year: 2020
  ident: 30774_CR22
  publication-title: Water Res
  doi: 10.1016/j.watres.2019.115454
– volume: 385
  start-page: 135671
  year: 2023
  ident: 30774_CR103
  publication-title: J Clean Prod
  doi: 10.1016/j.jclepro.2022.135671
– ident: 30774_CR14
  doi: 10.1007/978-3-030-23335-8_15
– volume: 27
  start-page: 2771
  year: 2013
  ident: 30774_CR77
  publication-title: Water Resour Manag
  doi: 10.1007/s11269-013-0314-3
– volume: 15
  start-page: 2532
  issue: 14
  year: 2023
  ident: 30774_CR3
  publication-title: Water
  doi: 10.3390/w15142532
– volume: 14
  start-page: 610
  issue: 4
  year: 2022
  ident: 30774_CR110
  publication-title: Water
  doi: 10.3390/w14040610
– volume: 341
  start-page: 118006
  year: 2023
  ident: 30774_CR116
  publication-title: J Environ Manag
  doi: 10.1016/j.jenvman.2023.118006
– volume: 840
  start-page: 156613
  year: 2022
  ident: 30774_CR107
  publication-title: Sci Total Environ
  doi: 10.1016/j.scitotenv.2022.156613
– ident: 30774_CR58
  doi: 10.1007/s11269-023-03428-w
– ident: 30774_CR16
  doi: 10.1016/j.jhydrol.2008.08.026
– ident: 30774_CR12
  doi: 10.1016/j.jhydrol.2021.126196
– volume: 721
  start-page: 137612
  year: 2020
  ident: 30774_CR15
  publication-title: Sci Total Environ
  doi: 10.1016/j.scitotenv.2020.137612
– volume: 146
  start-page: 109882
  year: 2023
  ident: 30774_CR24
  publication-title: Ecol Indic
  doi: 10.1016/j.ecolind.2023.109882
– ident: 30774_CR113
  doi: 10.1016/j.envpol.2022.119611
– volume: 86
  start-page: 105837
  year: 2020
  ident: 30774_CR84
  publication-title: Appl Soft Comput
  doi: 10.1016/j.asoc.2019.105837
– volume: 29
  start-page: 48491
  issue: 32
  year: 2022
  ident: 30774_CR88
  publication-title: Environ Sci Pollut Res
  doi: 10.1007/s11356-022-18644-x
– volume: 72
  start-page: 4
  issue: 1
  year: 2018
  ident: 30774_CR70
  publication-title: Statistica Neerlandica
  doi: 10.1111/stan.12111
– ident: 30774_CR37
  doi: 10.1080/10298436.2022.2057975
– volume: 5
  start-page: 132
  issue: 2
  year: 2022
  ident: 30774_CR18
  publication-title: One Earth
  doi: 10.1016/j.oneear.2022.01.008
– volume: 433
  start-page: 307
  year: 2014
  ident: 30774_CR71
  publication-title: Aquaculture
  doi: 10.1016/j.aquaculture.2014.06.029
– volume: 26
  start-page: 1001
  issue: 4
  year: 2022
  ident: 30774_CR112
  publication-title: Hydrol Earth Syst Sci
  doi: 10.5194/hess-26-1001-2022
– volume: 581
  start-page: 124432
  year: 2020
  ident: 30774_CR66
  publication-title: J Hydrol
  doi: 10.1016/j.jhydrol.2019.124432
– volume: 66
  start-page: 1457
  issue: 9
  year: 2021
  ident: 30774_CR61
  publication-title: Hydrol Sci J
  doi: 10.1080/02626667.2021.1928673
– volume-title: Ensemble methods: foundations and algorithms
  year: 2012
  ident: 30774_CR120
  doi: 10.1201/b12207
– volume: 3
  start-page: 652100
  year: 2021
  ident: 30774_CR87
  publication-title: Front Water
  doi: 10.3389/frwa.2021.652100
– volume: 7
  start-page: 105
  issue: 1
  year: 2023
  ident: 30774_CR78
  publication-title: Eigenpub Rev Sci Technol
– volume: 80
  start-page: 8091
  year: 2021
  ident: 30774_CR60
  publication-title: Multimed Tools Appl
  doi: 10.1007/s11042-020-10139-6
– volume: 85
  start-page: 11
  year: 2018
  ident: 30774_CR53
  publication-title: Ecol Indic
  doi: 10.1016/j.ecolind.2017.09.056
– volume: 219
  start-page: 118532
  year: 2022
  ident: 30774_CR101
  publication-title: Water Res
  doi: 10.1016/j.watres.2022.118532
– volume: 55
  start-page: 106
  issue: 1
  year: 2020
  ident: 30774_CR124
  publication-title: Water Qual Res J
  doi: 10.2166/wqrj.2019.053
– volume: 8
  start-page: 188068
  year: 2020
  ident: 30774_CR83
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2020.3030878
– ident: 30774_CR117
  doi: 10.1016/j.jclepro.2023.137931
– ident: 30774_CR20
  doi: 10.1109/ITNEC48623.2020.9084730
– volume: 44
  start-page: 101228
  year: 2022
  ident: 30774_CR73
  publication-title: J Hydrol Region Stud
  doi: 10.1016/j.ejrh.2022.101228
– volume: 30
  start-page: 883
  year: 2016
  ident: 30774_CR11
  publication-title: Stoch Env Res Risk A
  doi: 10.1007/s00477-015-1088-3
– ident: 30774_CR48
– volume: 28
  start-page: 2222
  issue: 10
  year: 2016
  ident: 30774_CR52
  publication-title: IEEE Trans Neural Netw Learn Syst
  doi: 10.1109/TNNLS.2016.2582924
– ident: 30774_CR43
  doi: 10.3390/w13202907
– ident: 30774_CR30
– volume: 26
  start-page: 30524
  year: 2019
  ident: 30774_CR69
  publication-title: Environ Sci Pollut Res
  doi: 10.1007/s11356-019-06360-y
– volume: 46
  start-page: 17273
  issue: 12
  year: 2022
  ident: 30774_CR97
  publication-title: Int J Energy Res
  doi: 10.1002/er.8392
– volume: 651
  start-page: 2985
  year: 2019
  ident: 30774_CR106
  publication-title: Sci Total Environ
  doi: 10.1016/j.scitotenv.2018.09.320
– volume: 416
  start-page: 137885
  year: 2023
  ident: 30774_CR115
  publication-title: J Clean Prod
  doi: 10.1016/j.jclepro.2023.137885
– volume: 317
  start-page: 125958
  year: 2022
  ident: 30774_CR54
  publication-title: Constr Build Mater
  doi: 10.1016/j.conbuildmat.2021.125958
– volume: 11
  start-page: 118
  issue: 1
  year: 2022
  ident: 30774_CR79
  publication-title: Environ Technol Rev
  doi: 10.1080/21622515.2022.2118084
– ident: 30774_CR1
  doi: 10.1016/j.uclim.2022.101237
– volume: 254
  start-page: 124376
  year: 2022
  ident: 30774_CR31
  publication-title: Energy
  doi: 10.1016/j.energy.2022.124376
– volume: 54
  start-page: 8558
  issue: 11
  year: 2018
  ident: 30774_CR90
  publication-title: Water Resour Res
  doi: 10.1029/2018WR022643
– ident: 30774_CR51
  doi: 10.1007/978-3-642-24797-2
– ident: 30774_CR94
  doi: 10.1016/j.jenvman.2023.118436
– volume: 216
  start-page: 208
  year: 2016
  ident: 30774_CR121
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2016.07.036
– ident: 30774_CR36
  doi: 10.1007/s40808-021-01253-x
– volume: 85
  start-page: 6
  issue: 1
  year: 1997
  ident: 30774_CR55
  publication-title: Proc IEEE
  doi: 10.1109/5.554205
– ident: 30774_CR41
  doi: 10.1007/s40515-022-00244-4
– ident: 30774_CR25
  doi: 10.48550/arXiv.1406.1078
– ident: 30774_CR44
  doi: 10.1016/j.eswa.2020.113660
– ident: 30774_CR32
  doi: 10.1038/s41598-023-39156-9
– volume: 821
  start-page: 153311
  year: 2022
  ident: 30774_CR81
  publication-title: Sci Total Environ
  doi: 10.1016/j.scitotenv.2022.153311
– ident: 30774_CR34
  doi: 10.1007/3-540-45356-3_83
– volume: 577
  start-page: 123962
  year: 2019
  ident: 30774_CR39
  publication-title: J Hydrol
  doi: 10.1016/j.jhydrol.2019.123962
– volume: 186
  start-page: 116349
  year: 2020
  ident: 30774_CR82
  publication-title: Water Res
  doi: 10.1016/j.watres.2020.116349
– volume: 19
  start-page: 439
  issue: 7
  year: 2020
  ident: 30774_CR38
  publication-title: J Saudi Soc Agric Sci
  doi: 10.1016/j.jssas.2020.08.001
– volume: 132
  start-page: 104792
  year: 2020
  ident: 30774_CR59
  publication-title: Environ Model Softw
  doi: 10.1016/j.envsoft.2020.104792
– volume: 648
  start-page: 839
  year: 2019
  ident: 30774_CR42
  publication-title: Sci Total Environ
  doi: 10.1016/j.scitotenv.2018.08.221
– volume: 55
  start-page: 565
  issue: 1
  year: 2022
  ident: 30774_CR108
  publication-title: Artif Intell Rev
  doi: 10.1007/s10462-021-10038-8
SSID ssj0020927
Score 2.4823608
Snippet Water quality variables, including chlorophyll-a (Chl-a), play a pivotal role in comprehending and evaluating the condition of aquatic ecosystems. Chl-a, a...
SourceID proquest
pubmed
crossref
springer
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 124316
SubjectTerms Algae
Algorithms
Aquatic ecosystems
Aquatic organisms
Aquatic Pollution
Atmospheric Protection/Air Quality Control/Air Pollution
Chlorophyll
Cyanobacteria
data collection
Deep learning
Earth and Environmental Science
Ecotoxicology
Environment
Environmental Chemistry
Environmental Health
Forecasting
Genetic algorithms
Greece
lakes
Long short-term memory
Machine learning
Mathematical models
Multiple objective analysis
Neural networks
Recurrent neural networks
Research Article
Sorting algorithms
Waste Water Technology
Water Management
Water Pollution Control
Water quality
SummonAdditionalLinks – databaseName: SpringerLink Journals (ICM)
  dbid: U2A
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LSwMxEA5aL17EV7W-iOBNF7LZZJMci7QUQU8WepEluzvbi25Lt7X4753so0VqBc-ZLGEyk_lm50XIHVimAfzUQ2OtPZGp0NM2Ux7XEhBPpGgCXaHw80s4GIqnkRzVRWFFk-3ehCTLl3pd7OYH0iXMBu5_iRKe2CV70rXzQike8u7KzWKGq7o85vd9P03QBq7ciImWpqZ_SA5qjEi71aUekR3Ij0m7ty5Jw8VaJ4sT8uamaya2cPnLdInQcUarSskv-omOsCuNoi67fUxTgCmtx0SMqc1Tuix_jEJKLUp0Oa-IolsLH25POSOnOCXDfu_1ceDVQxO8RDA991ScZCCDEJSUmgnwA_SI4pBbG8SouzYBNFomFjxNIGRZaNFlESq2iVQszDgL2qSVT3I4JzSTLmZowcRGiDg1FqGeMmAMzxSzvt8hfsPHKKk7irvBFu_Ruhey432EvI9K3keiQ-5Xe6ZVP40_qa-a64lq3SoibvDV4eha8w65XS2jVrhQh81hskAahGEaDbRm22kCfOylRLiL3zmrrn51pEAZ12lRd8hDIwvrA2w_78X_yC_JvpteX2XHXJHWfLaAa8Q48_imFOlvgoXzDg
  priority: 102
  providerName: Springer Nature
Title Forecasting water quality variable using deep learning and weighted averaging ensemble models
URI https://link.springer.com/article/10.1007/s11356-023-30774-4
https://www.ncbi.nlm.nih.gov/pubmed/37996598
https://www.proquest.com/docview/2904823382
https://www.proquest.com/docview/2893834180
https://www.proquest.com/docview/3153555332
Volume 30
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVLSH
  databaseName: SpringerLink Journals
  customDbUrl:
  mediaType: online
  eissn: 1614-7499
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0020927
  issn: 1614-7499
  databaseCode: AFBBN
  dateStart: 19970301
  isFulltext: true
  providerName: Library Specific Holdings
– providerCode: PRVPQU
  databaseName: Proquest Public Health Database
  customDbUrl:
  eissn: 1614-7499
  dateEnd: 20241102
  omitProxy: true
  ssIdentifier: ssj0020927
  issn: 1614-7499
  databaseCode: 8C1
  dateStart: 20190101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/publichealth
  providerName: ProQuest
– providerCode: PRVAVX
  databaseName: SpringerLINK - Czech Republic Consortium
  customDbUrl:
  eissn: 1614-7499
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0020927
  issn: 1614-7499
  databaseCode: AGYKE
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: http://link.springer.com
  providerName: Springer Nature
– providerCode: PRVAVX
  databaseName: SpringerLink Journals (ICM)
  customDbUrl:
  eissn: 1614-7499
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0020927
  issn: 1614-7499
  databaseCode: U2A
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: http://www.springerlink.com/journals/
  providerName: Springer Nature
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3db9MwED9t7QsviK9BYVSexBtYJI4d2w9oKlO3CUSFEJXKA4qc5LIXSMvaMfHf7y4frdC0veQhsSPrfOe78338AN5giBxiXEpS1k7qyqbShcpK5QySPVGSCuRC4S-z9HyuPy3MYg9mfS0Mp1X2Z2JzUJfLgu_I3ytPvKbIoVLHqz-SUaM4utpDaIQOWqH80LQY24eh4s5YAxh-nM6-ftu6YJFvQVy91jJOtO7KaNpiujgxnJCb8H2M1VL_r6pu2Z-3YqeNSjp9BA87W1JM2s1_DHtYP4GD6a50jT52srt-Cj8ZhbMIa85zFtdkYl6KtqLyn_hLDjOXUAnOgr8QJeJKdHASFyLUpbhuLlCxFIE4v8E1EuT-4m-e02DprJ_B_HT6_eRcduAKstCR20ibFxWaJEVrjIs0xgl5TnmqQkhykvFQICk3n2tVFphGVRrItdE2D4WxUVqpKDmAQb2s8QWIynBsMaDPiax56QOZhNaj96qyUYjjEcQ9HbOi6zzOABi_sl3PZKZ9RrTPGtpnegRvt3NWbd-Ne0cf9tuTdTK4znYcM4Kj7WeSHg6JhBqXVzSGzDVHitxFd49JSCkYQ2Yx_ed5u_XbJSXWc0dGN4J3PS_sFnD3el_ev95X8IBR7dusmUMYbC6v8DXZPpt8DPt2YenpTuIxDCdnPz5Pxx2T09u5mtwAhycCvw
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LbxQxDLZKOcAF8SpdKBAkOEHETB6T5IAQKq229HFqpV7QkJnx9AKzS3fLqn-K34g9j12hqr31nIcix7E_J3Y-gLcYE4-YVpKctZemdpn0sXZSeYuEJypygVwofHiUjU_Mt1N7ugZ_h1oYTqscbGJrqKtJyXfkH1UgXVMUUKnP09-SWaP4dXWg0OjUYh8vFxSyzT7tfaX9fafU7s7x9lj2rAKyNImfS1eUNVqdobPWJwZTTSFDkakYdUHKHUskqx4Ko6oSs6TOImF644pYWpdktUo0zXsH7hqtHBsCv71MKVFJ6ChigzEy1cb0RTpdqV6qLaf7ar7tcUaa_x3hFXR75WW2dXi7D-FBj1TFl061HsEaNo9hY2dVGEeNvWWYPYHvzPFZxhlnUYsFAdhz0dVrXoo_FI5zgZbgHPszUSFORU9WcSZiU4lFez2LlYh0rlrWJEHBNf7iMS1Tz-wpnNyKkDdgvZk0uAmitvxyGTEUJNaiCpEApwsYgqpdEtN0BOkgx7zs_zVneo2f-epHZpZ9TrLPW9nnZgTvl2Om3a8eN_beGrYn70_4LF_p4wjeLJvpbPKDS2xwckF9CAx6ggk-ub6PJpdjLYFumudZt_XLJWkX-L9HP4IPgy6sFnD9ep_fvN7XcG98fHiQH-wd7b-A-4p1ss3P2YL1-fkFviSUNS9etaot4Mdtn6V_t-0z8w
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VIiEuiFdhoYCR4ARWEz_i-IAQol21FCoOVNoLCk4y6QWyS7Nl1b_Gr2Mmj41Q1d569kPWeMbzjT3jD-AVhihFjEtJzjqVpnKJTEPlpEotEp4oyQVyofCXo2T_2Hya2dkG_B1qYTitcjgT24O6nBd8R76jPOmaooBK7VR9WsTX3en7xW_JDFL80jrQaXQqcojnKwrfmncHu7TXr5Wa7n37uC97hgFZmChdSpcXFVqdoLM2jQzGmsKHPFEh6JwUPRRIJ7zPjSoLTKIqCYTvjctDYV2UVCrSNO8NuOm09pxO6GZjsBf5ji7WGyNjbUxfsNOV7cXacuqv5psfZ6T53yleQLoXXmlb5ze9C3d61Co-dGp2Dzawvg9be2ORHDX2p0TzAL4z32cRGs6oFisCs6eiq908F38oNOdiLcH59ieiRFyInrjiRIS6FKv2qhZLEcjGWgYlQYE2_uIxLWtP8xCOr0XIW7BZz2t8DKKy_IoZ0Ock1rz0gcCn8-i9qlwU4ngC8SDHrOj_OGeqjZ_Z-Dszyz4j2Wet7DMzgTfrMYvuh48re28P25P11t5ko25O4OW6meyUH19CjfMz6kPAMCXIkEaX99HkfqwlAE7zPOq2fr0k7Tz__ZhO4O2gC-MCLl_vk6vX-wJukRVlnw-ODp_CbcUq2abqbMPm8vQMnxHgWubPW80W8OO6Tekfsfw4Yg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Forecasting+water+quality+variable+using+deep+learning+and+weighted+averaging+ensemble+models&rft.jtitle=Environmental+science+and+pollution+research+international&rft.au=Zamani%2C+Mohammad+G&rft.au=Nikoo%2C+Mohammad+Reza&rft.au=Jahanshahi%2C+Sina&rft.au=Barzegar%2C+Rahim&rft.date=2023-12-01&rft.pub=Springer+Nature+B.V&rft.issn=0944-1344&rft.eissn=1614-7499&rft.volume=30&rft.issue=59&rft.spage=124316&rft.epage=124340&rft_id=info:doi/10.1007%2Fs11356-023-30774-4&rft.externalDBID=HAS_PDF_LINK
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1614-7499&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1614-7499&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1614-7499&client=summon