Forecasting water quality variable using deep learning and weighted averaging ensemble models
Water quality variables, including chlorophyll-a (Chl-a), play a pivotal role in comprehending and evaluating the condition of aquatic ecosystems. Chl-a, a pigment present in diverse aquatic organisms, notably algae and cyanobacteria, serves as a valuable indicator of water quality. Thus, the object...
        Saved in:
      
    
          | Published in | Environmental science and pollution research international Vol. 30; no. 59; pp. 124316 - 124340 | 
|---|---|
| Main Authors | , , , , | 
| Format | Journal Article | 
| Language | English | 
| Published | 
        Berlin/Heidelberg
          Springer Berlin Heidelberg
    
        01.12.2023
     Springer Nature B.V  | 
| Subjects | |
| Online Access | Get full text | 
| ISSN | 1614-7499 0944-1344 1614-7499  | 
| DOI | 10.1007/s11356-023-30774-4 | 
Cover
| Abstract | Water quality variables, including chlorophyll-a (Chl-a), play a pivotal role in comprehending and evaluating the condition of aquatic ecosystems. Chl-a, a pigment present in diverse aquatic organisms, notably algae and cyanobacteria, serves as a valuable indicator of water quality. Thus, the objectives of this study encompass: (1) the assessment of the predictive capabilities of four deep learning (DL) models — namely, recurrent neural network (RNN), long short-term memory (LSTM), gated recurrence unit (GRU), and temporal convolutional network (TCN) — in forecasting Chl-a concentrations; (2) the incorporation of these DL models into ensemble models (EMs) employing genetic algorithm (GA) and non-dominated sorting genetic algorithm (NSGA-II) to harness the strengths of each standalone model; and (3) the evaluation of the efficacy of the developed EMs. Utilizing data collected at 15-min intervals from Small Prespa Lake (SPL) in Greece, the models employed hourly Chl-a concentration lag times, extending up to 6 h, as models’ inputs to forecast Chla (t+1). The proposed models underwent training on 70% of the dataset and were subsequently validated on the remaining 30%. Among the standalone DL models, the GRU model exhibited superior performance in Chl-a forecasting, surpassing the RNN, LSTM, and TCN models by 8%, 2%, and 2%, respectively. Furthermore, the integration of DL models through single-objective GA and multi-objective NSGA-II optimization algorithms yielded hybrid models adept at effectively forecasting both low and high Chl-a concentrations. The ensemble model based on NSGA-II outperformed standalone DL models as well as the GA-based model across a range of evaluation indices. For instance, considering the
R
-squared metric, the study’s findings demonstrated that the EM-NSGA-II stands out with exceptional effectiveness compared to DL and EM-GA models, showcasing improvements of 14% (RNN), 8% (LSTM), 6% (GRU), 8% (TCN), and 3% (EM-GA) during the testing phase. | 
    
|---|---|
| AbstractList | Water quality variables, including chlorophyll-a (Chl-a), play a pivotal role in comprehending and evaluating the condition of aquatic ecosystems. Chl-a, a pigment present in diverse aquatic organisms, notably algae and cyanobacteria, serves as a valuable indicator of water quality. Thus, the objectives of this study encompass: (1) the assessment of the predictive capabilities of four deep learning (DL) models — namely, recurrent neural network (RNN), long short-term memory (LSTM), gated recurrence unit (GRU), and temporal convolutional network (TCN) — in forecasting Chl-a concentrations; (2) the incorporation of these DL models into ensemble models (EMs) employing genetic algorithm (GA) and non-dominated sorting genetic algorithm (NSGA-II) to harness the strengths of each standalone model; and (3) the evaluation of the efficacy of the developed EMs. Utilizing data collected at 15-min intervals from Small Prespa Lake (SPL) in Greece, the models employed hourly Chl-a concentration lag times, extending up to 6 h, as models’ inputs to forecast Chla (t+1). The proposed models underwent training on 70% of the dataset and were subsequently validated on the remaining 30%. Among the standalone DL models, the GRU model exhibited superior performance in Chl-a forecasting, surpassing the RNN, LSTM, and TCN models by 8%, 2%, and 2%, respectively. Furthermore, the integration of DL models through single-objective GA and multi-objective NSGA-II optimization algorithms yielded hybrid models adept at effectively forecasting both low and high Chl-a concentrations. The ensemble model based on NSGA-II outperformed standalone DL models as well as the GA-based model across a range of evaluation indices. For instance, considering the R-squared metric, the study’s findings demonstrated that the EM-NSGA-II stands out with exceptional effectiveness compared to DL and EM-GA models, showcasing improvements of 14% (RNN), 8% (LSTM), 6% (GRU), 8% (TCN), and 3% (EM-GA) during the testing phase. Water quality variables, including chlorophyll-a (Chl-a), play a pivotal role in comprehending and evaluating the condition of aquatic ecosystems. Chl-a, a pigment present in diverse aquatic organisms, notably algae and cyanobacteria, serves as a valuable indicator of water quality. Thus, the objectives of this study encompass: (1) the assessment of the predictive capabilities of four deep learning (DL) models — namely, recurrent neural network (RNN), long short-term memory (LSTM), gated recurrence unit (GRU), and temporal convolutional network (TCN) — in forecasting Chl-a concentrations; (2) the incorporation of these DL models into ensemble models (EMs) employing genetic algorithm (GA) and non-dominated sorting genetic algorithm (NSGA-II) to harness the strengths of each standalone model; and (3) the evaluation of the efficacy of the developed EMs. Utilizing data collected at 15-min intervals from Small Prespa Lake (SPL) in Greece, the models employed hourly Chl-a concentration lag times, extending up to 6 h, as models’ inputs to forecast Chla (t+1). The proposed models underwent training on 70% of the dataset and were subsequently validated on the remaining 30%. Among the standalone DL models, the GRU model exhibited superior performance in Chl-a forecasting, surpassing the RNN, LSTM, and TCN models by 8%, 2%, and 2%, respectively. Furthermore, the integration of DL models through single-objective GA and multi-objective NSGA-II optimization algorithms yielded hybrid models adept at effectively forecasting both low and high Chl-a concentrations. The ensemble model based on NSGA-II outperformed standalone DL models as well as the GA-based model across a range of evaluation indices. For instance, considering the R -squared metric, the study’s findings demonstrated that the EM-NSGA-II stands out with exceptional effectiveness compared to DL and EM-GA models, showcasing improvements of 14% (RNN), 8% (LSTM), 6% (GRU), 8% (TCN), and 3% (EM-GA) during the testing phase. Water quality variables, including chlorophyll-a (Chl-a), play a pivotal role in comprehending and evaluating the condition of aquatic ecosystems. Chl-a, a pigment present in diverse aquatic organisms, notably algae and cyanobacteria, serves as a valuable indicator of water quality. Thus, the objectives of this study encompass: (1) the assessment of the predictive capabilities of four deep learning (DL) models - namely, recurrent neural network (RNN), long short-term memory (LSTM), gated recurrence unit (GRU), and temporal convolutional network (TCN) - in forecasting Chl-a concentrations; (2) the incorporation of these DL models into ensemble models (EMs) employing genetic algorithm (GA) and non-dominated sorting genetic algorithm (NSGA-II) to harness the strengths of each standalone model; and (3) the evaluation of the efficacy of the developed EMs. Utilizing data collected at 15-min intervals from Small Prespa Lake (SPL) in Greece, the models employed hourly Chl-a concentration lag times, extending up to 6 h, as models' inputs to forecast Chla (t+1). The proposed models underwent training on 70% of the dataset and were subsequently validated on the remaining 30%. Among the standalone DL models, the GRU model exhibited superior performance in Chl-a forecasting, surpassing the RNN, LSTM, and TCN models by 8%, 2%, and 2%, respectively. Furthermore, the integration of DL models through single-objective GA and multi-objective NSGA-II optimization algorithms yielded hybrid models adept at effectively forecasting both low and high Chl-a concentrations. The ensemble model based on NSGA-II outperformed standalone DL models as well as the GA-based model across a range of evaluation indices. For instance, considering the R-squared metric, the study's findings demonstrated that the EM-NSGA-II stands out with exceptional effectiveness compared to DL and EM-GA models, showcasing improvements of 14% (RNN), 8% (LSTM), 6% (GRU), 8% (TCN), and 3% (EM-GA) during the testing phase.Water quality variables, including chlorophyll-a (Chl-a), play a pivotal role in comprehending and evaluating the condition of aquatic ecosystems. Chl-a, a pigment present in diverse aquatic organisms, notably algae and cyanobacteria, serves as a valuable indicator of water quality. Thus, the objectives of this study encompass: (1) the assessment of the predictive capabilities of four deep learning (DL) models - namely, recurrent neural network (RNN), long short-term memory (LSTM), gated recurrence unit (GRU), and temporal convolutional network (TCN) - in forecasting Chl-a concentrations; (2) the incorporation of these DL models into ensemble models (EMs) employing genetic algorithm (GA) and non-dominated sorting genetic algorithm (NSGA-II) to harness the strengths of each standalone model; and (3) the evaluation of the efficacy of the developed EMs. Utilizing data collected at 15-min intervals from Small Prespa Lake (SPL) in Greece, the models employed hourly Chl-a concentration lag times, extending up to 6 h, as models' inputs to forecast Chla (t+1). The proposed models underwent training on 70% of the dataset and were subsequently validated on the remaining 30%. Among the standalone DL models, the GRU model exhibited superior performance in Chl-a forecasting, surpassing the RNN, LSTM, and TCN models by 8%, 2%, and 2%, respectively. Furthermore, the integration of DL models through single-objective GA and multi-objective NSGA-II optimization algorithms yielded hybrid models adept at effectively forecasting both low and high Chl-a concentrations. The ensemble model based on NSGA-II outperformed standalone DL models as well as the GA-based model across a range of evaluation indices. For instance, considering the R-squared metric, the study's findings demonstrated that the EM-NSGA-II stands out with exceptional effectiveness compared to DL and EM-GA models, showcasing improvements of 14% (RNN), 8% (LSTM), 6% (GRU), 8% (TCN), and 3% (EM-GA) during the testing phase.  | 
    
| Author | Meydani, Amirreza Barzegar, Rahim Zamani, Mohammad G. Nikoo, Mohammad Reza Jahanshahi, Sina  | 
    
| Author_xml | – sequence: 1 givenname: Mohammad G. surname: Zamani fullname: Zamani, Mohammad G. organization: Department of Water Resources Engineering, Faculty of Civil, Water and Environmental Engineering, Amirkabir University of Technology – sequence: 2 givenname: Mohammad Reza orcidid: 0000-0002-3740-4389 surname: Nikoo fullname: Nikoo, Mohammad Reza email: m.reza@squ.edu.om organization: Department of Civil and Architectural Engineering, Sultan Qaboos University – sequence: 3 givenname: Sina surname: Jahanshahi fullname: Jahanshahi, Sina organization: Department of Water Resources Engineering, Faculty of Civil, Water and Environmental Engineering, University of Tehran – sequence: 4 givenname: Rahim surname: Barzegar fullname: Barzegar, Rahim organization: Groundwater Research Group (GRES), Research Institute on Mines and Environment (RIME), Université du Québec en Abitibi-Témiscamingue (UQAT) – sequence: 5 givenname: Amirreza surname: Meydani fullname: Meydani, Amirreza organization: Department of Geography and Spatial Sciences, University of Delaware  | 
    
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/37996598$$D View this record in MEDLINE/PubMed | 
    
| BookMark | eNqFkctu1TAURS1URB_wAwxQJCZMAraPn0NUUUCqxASGyDpxTi6pEufWTlr170m4rUAdlJFfa23Z3qfsKE2JGHst-HvBuf1QhABtai6hBm6tqtUzdiKMULVV3h_9Mz9mp6VccS65l_YFOwbrvdHenbCfF1OmiGXu0666xZlydb3g0M931Q3mHpuBqqVshy3RvhoIc9pWmNrqlvrdr5naCm8o427bplRo3JxxamkoL9nzDodCr-7HM_bj4tP38y_15bfPX88_XtZRcTfXtokdaTBktXZckQArTGMkIjRSaowEHHyjZBvJ8M6gVk7ZBqO23HSSwxl7d8jd5-l6oTKHsS-RhgETTUsJIDRorQHkf1HpPDhQwm2pbx-hV9OS0_qQID1XTgK4LfDNPbU0I7Vhn_sR8114-OMVcAcg5qmUTF2I_YxzP6U5Yz8EwcNWZzjUGdY6w586g1pV-Uh9SH9SgoNUVjjtKP-99hPWb2DDsQM | 
    
| CitedBy_id | crossref_primary_10_1016_j_uclim_2024_102272 crossref_primary_10_1371_journal_pone_0310218 crossref_primary_10_1007_s11356_024_33058_7 crossref_primary_10_1007_s40996_024_01685_2 crossref_primary_10_1016_j_jhydrol_2024_131365 crossref_primary_10_1016_j_autcon_2024_105655 crossref_primary_10_1080_09593330_2024_2415722 crossref_primary_10_1016_j_jenvman_2024_122903 crossref_primary_10_1016_j_jhydrol_2024_131767 crossref_primary_10_1007_s10723_024_09752_8 crossref_primary_10_1016_j_engappai_2024_108420 crossref_primary_10_3389_fmars_2024_1365047 crossref_primary_10_1007_s00158_024_03772_4 crossref_primary_10_1016_j_aei_2024_102485 crossref_primary_10_1038_s41598_024_66699_2 crossref_primary_10_1155_2023_8089395 crossref_primary_10_3390_cli12080119 crossref_primary_10_1007_s11042_024_19126_7  | 
    
| Cites_doi | 10.1016/j.ecoinf.2018.01.005 10.1016/j.jag.2018.07.018 10.1016/j.jhydrol.2021.126266 10.1007/s41207-020-0151-8 10.1016/j.jclepro.2020.125266 10.3390/w14213390 10.1016/j.ecolind.2020.107218 10.1016/j.knosys.2020.106062 10.1016/j.jenvman.2023.118368 10.1007/s11356-022-18914-8 10.1109/TEVC.2007.892759 10.1007/s11356-019-05116-y 10.1007/s10661-020-08631-5 10.1007/s11356-022-22719-0 10.1007/978-3-540-73190-0_2 10.1007/s11899-016-0355-9 10.1007/978-3-031-26580-8_5 10.1016/j.jhydrol.2019.06.075 10.1007/s00477-016-1338-z 10.1080/02626667.2023.2180375 10.1007/s11356-021-17084-3 10.1007/s00477-020-01776-2 10.3389/fenvs.2022.880246 10.1007/s11356-022-19014-3 10.1080/02626667.2019.1628347 10.1109/ACCESS.2019.2903015 10.1007/s10661-013-3450-6 10.11591/ijai.v9.i1.pp126-134 10.1007/s00477-017-1394-z 10.1016/B978-0-323-85597-6.00020-3 10.1128/msystems.01111-21 10.1145/3287560.3287595 10.23919/ICACT.2019.8702027 10.1016/j.scitotenv.2023.161614 10.1007/s12517-022-09546-w 10.1016/j.ecolind.2023.109882 10.1016/j.scitotenv.2023.162998 10.48550/arXiv.1803.01271 10.1162/neco.1997.9.8.1735 10.1016/j.agwat.2020.106303 10.1007/s10661-014-3719-4 10.1016/j.jag.2023.103364 10.3390/w9070524 10.1109/81.222795 10.3390/su11072058 10.1109/4235.996017 10.3390/w12061822 10.1007/978-3-319-93025-1_4 10.1016/j.jenvman.2022.115923 10.1016/B978-0-12-813314-9.00002-5 10.1061/(ASCE)EE.1943-7870.0001528 10.1109/TGRS.2020.2964627 10.1016/j.eswa.2023.121076 10.1007/s40808-015-0072-8 10.1016/j.watres.2019.115454 10.1016/j.jclepro.2022.135671 10.1007/978-3-030-23335-8_15 10.1007/s11269-013-0314-3 10.3390/w15142532 10.3390/w14040610 10.1016/j.jenvman.2023.118006 10.1016/j.scitotenv.2022.156613 10.1007/s11269-023-03428-w 10.1016/j.jhydrol.2008.08.026 10.1016/j.jhydrol.2021.126196 10.1016/j.scitotenv.2020.137612 10.1016/j.envpol.2022.119611 10.1016/j.asoc.2019.105837 10.1007/s11356-022-18644-x 10.1111/stan.12111 10.1080/10298436.2022.2057975 10.1016/j.oneear.2022.01.008 10.1016/j.aquaculture.2014.06.029 10.5194/hess-26-1001-2022 10.1016/j.jhydrol.2019.124432 10.1080/02626667.2021.1928673 10.1201/b12207 10.3389/frwa.2021.652100 10.1007/s11042-020-10139-6 10.1016/j.ecolind.2017.09.056 10.1016/j.watres.2022.118532 10.2166/wqrj.2019.053 10.1109/ACCESS.2020.3030878 10.1016/j.jclepro.2023.137931 10.1109/ITNEC48623.2020.9084730 10.1016/j.ejrh.2022.101228 10.1007/s00477-015-1088-3 10.1109/TNNLS.2016.2582924 10.3390/w13202907 10.1007/s11356-019-06360-y 10.1002/er.8392 10.1016/j.scitotenv.2018.09.320 10.1016/j.jclepro.2023.137885 10.1016/j.conbuildmat.2021.125958 10.1080/21622515.2022.2118084 10.1016/j.uclim.2022.101237 10.1016/j.energy.2022.124376 10.1029/2018WR022643 10.1007/978-3-642-24797-2 10.1016/j.jenvman.2023.118436 10.1016/j.neucom.2016.07.036 10.1007/s40808-021-01253-x 10.1109/5.554205 10.1007/s40515-022-00244-4 10.48550/arXiv.1406.1078 10.1016/j.eswa.2020.113660 10.1038/s41598-023-39156-9 10.1016/j.scitotenv.2022.153311 10.1007/3-540-45356-3_83 10.1016/j.jhydrol.2019.123962 10.1016/j.watres.2020.116349 10.1016/j.jssas.2020.08.001 10.1016/j.envsoft.2020.104792 10.1016/j.scitotenv.2018.08.221 10.1007/s10462-021-10038-8  | 
    
| ContentType | Journal Article | 
    
| Copyright | The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. 2023. The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature.  | 
    
| Copyright_xml | – notice: The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. – notice: 2023. The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature.  | 
    
| DBID | AAYXX CITATION NPM 3V. 7QL 7SN 7T7 7TV 7U7 7WY 7WZ 7X7 7XB 87Z 88E 88I 8AO 8C1 8FD 8FI 8FJ 8FK 8FL ABUWG AEUYN AFKRA ATCPS AZQEC BENPR BEZIV BHPHI C1K CCPQU DWQXO FR3 FRNLG FYUFA F~G GHDGH GNUQQ HCIFZ K60 K6~ K9. L.- M0C M0S M1P M2P M7N P64 PATMY PHGZM PHGZT PJZUB PKEHL PPXIY PQBIZ PQBZA PQEST PQQKQ PQUKI PYCSY Q9U 7X8 7S9 L.6  | 
    
| DOI | 10.1007/s11356-023-30774-4 | 
    
| DatabaseName | CrossRef PubMed ProQuest Central (Corporate) Bacteriology Abstracts (Microbiology B) Ecology Abstracts Industrial and Applied Microbiology Abstracts (Microbiology A) Pollution Abstracts Toxicology Abstracts ABI/INFORM Collection (NTUSG) ABI/INFORM Global (PDF only) Health & Medical Collection ProQuest Central (purchase pre-March 2016) ABI/INFORM Collection Medical Database (Alumni Edition) Science Database (Alumni Edition) ProQuest Pharma Collection Proquest Public Health Database Technology Research Database Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ABI/INFORM Collection (Alumni) ProQuest Central (Alumni) ProQuest One Sustainability ProQuest Central UK/Ireland Agricultural & Environmental Science Collection ProQuest Central Essentials ProQuest Central Business Premium Collection Natural Science Collection Environmental Sciences and Pollution Management ProQuest One ProQuest Central Engineering Research Database Business Premium Collection (Alumni) Proquest Health Research Premium Collection ABI/INFORM Global (Corporate) Health Research Premium Collection (Alumni) ProQuest Central Student SciTech Premium Collection ProQuest Business Collection (Alumni Edition) ProQuest Business Collection ProQuest Health & Medical Complete (Alumni) ABI/INFORM Professional Advanced ABI/INFORM global ProQuest Health & Medical Collection Medical Database Science Database Algology Mycology and Protozoology Abstracts (Microbiology C) Biotechnology and BioEngineering Abstracts Environmental Science Database Proquest Central Premium ProQuest One Academic ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Business ProQuest One Business (Alumni) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Academic ProQuest One Academic UKI Edition Environmental Science Collection ProQuest Central Basic MEDLINE - Academic AGRICOLA AGRICOLA - Academic  | 
    
| DatabaseTitle | CrossRef PubMed ProQuest Business Collection (Alumni Edition) ProQuest Central Student ProQuest Central Essentials SciTech Premium Collection ABI/INFORM Complete Environmental Sciences and Pollution Management ProQuest One Sustainability Health Research Premium Collection Natural Science Collection Health & Medical Research Collection Industrial and Applied Microbiology Abstracts (Microbiology A) ProQuest Central (New) ProQuest Medical Library (Alumni) Business Premium Collection ABI/INFORM Global ProQuest Science Journals (Alumni Edition) ProQuest One Academic Eastern Edition ProQuest Hospital Collection Health Research Premium Collection (Alumni) ProQuest Business Collection Ecology Abstracts ProQuest Hospital Collection (Alumni) Biotechnology and BioEngineering Abstracts Environmental Science Collection ProQuest Health & Medical Complete ProQuest One Academic UKI Edition Environmental Science Database Engineering Research Database ProQuest One Academic ProQuest One Academic (New) ABI/INFORM Global (Corporate) ProQuest One Business Technology Research Database ProQuest One Academic Middle East (New) ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest One Health & Nursing Pollution Abstracts ProQuest Pharma Collection ProQuest Central ABI/INFORM Professional Advanced ProQuest Health & Medical Research Collection Health and Medicine Complete (Alumni Edition) ProQuest Central Korea Bacteriology Abstracts (Microbiology B) Algology Mycology and Protozoology Abstracts (Microbiology C) Agricultural & Environmental Science Collection ABI/INFORM Complete (Alumni Edition) ProQuest Public Health ABI/INFORM Global (Alumni Edition) ProQuest Central Basic Toxicology Abstracts ProQuest Science Journals ProQuest Medical Library ProQuest One Business (Alumni) ProQuest Central (Alumni) Business Premium Collection (Alumni) MEDLINE - Academic AGRICOLA AGRICOLA - Academic  | 
    
| DatabaseTitleList | ProQuest Business Collection (Alumni Edition) PubMed AGRICOLA MEDLINE - Academic  | 
    
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: BENPR name: ProQuest Central url: http://www.proquest.com/pqcentral?accountid=15518 sourceTypes: Aggregation Database  | 
    
| DeliveryMethod | fulltext_linktorsrc | 
    
| Discipline | Environmental Sciences | 
    
| EISSN | 1614-7499 | 
    
| EndPage | 124340 | 
    
| ExternalDocumentID | 37996598 10_1007_s11356_023_30774_4  | 
    
| Genre | Journal Article | 
    
| GeographicLocations | Greece | 
    
| GeographicLocations_xml | – name: Greece | 
    
| GroupedDBID | --- -5A -5G -5~ -BR -EM -Y2 -~C .VR 06D 0R~ 0VY 199 1N0 2.D 203 29G 2J2 2JN 2JY 2KG 2KM 2LR 2P1 2VQ 2~H 30V 3V. 4.4 406 408 409 40D 40E 4P2 53G 5GY 5VS 67M 67Z 6NX 78A 7WY 7X7 7XC 88E 88I 8AO 8C1 8FE 8FH 8FI 8FJ 8FL 8TC 8UJ 95- 95. 95~ 96X AAAVM AABHQ AACDK AAHBH AAHNG AAIAL AAJBT AAJKR AANZL AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYQN AAYTO AAYZH ABAKF ABBBX ABBXA ABDZT ABECU ABFTV ABHLI ABHQN ABJNI ABJOX ABKCH ABMNI ABMQK ABNWP ABQBU ABQSL ABSXP ABTEG ABTHY ABTKH ABTMW ABULA ABUWG ABWNU ABXPI ACAOD ACBXY ACDTI ACGFO ACGFS ACGOD ACHSB ACHXU ACKNC ACMDZ ACMLO ACOKC ACOMO ACPIV ACPRK ACREN ACSNA ACSVP ACZOJ ADBBV ADHHG ADHIR ADINQ ADKNI ADKPE ADRFC ADTPH ADURQ ADYFF ADYOE ADZKW AEBTG AEFQL AEGAL AEGNC AEJHL AEJRE AEKMD AEMSY AENEX AEOHA AEPYU AESKC AETLH AEUYN AEVLU AEXYK AFBBN AFGCZ AFKRA AFLOW AFQWF AFRAH AFWTZ AFYQB AFZKB AGAYW AGDGC AGGDS AGJBK AGMZJ AGQEE AGQMX AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHKAY AHMBA AHSBF AHYZX AIAKS AIGIU AIIXL AILAN AITGF AJBLW AJRNO AJZVZ ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMTXH AMXSW AMYLF AMYQR AOCGG ARMRJ ASPBG ATCPS AVWKF AXYYD AYJHY AZFZN AZQEC B-. BA0 BBWZM BDATZ BENPR BEZIV BGNMA BHPHI BPHCQ BSONS BVXVI CAG CCPQU COF CS3 CSCUP DDRTE DL5 DNIVK DPUIP DU5 DWQXO EBD EBLON EBS EDH EIOEI EJD ESBYG F5P FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRNLG FRRFC FSGXE FWDCC FYUFA GGCAI GGRSB GJIRD GNUQQ GNWQR GQ6 GQ7 GQ8 GROUPED_ABI_INFORM_COMPLETE GXS H13 HCIFZ HF~ HG5 HG6 HMCUK HMJXF HQYDN HRMNR HVGLF HZ~ IJ- IKXTQ IWAJR IXC IXD IXE IZIGR IZQ I~X I~Y I~Z J-C J0Z JBSCW JCJTX JZLTJ K60 K6~ KDC KOV L8X LAS LLZTM M0C M1P M2P M4Y MA- ML. N2Q N9A NB0 NDZJH NF0 NPVJJ NQJWS NU0 O9- O93 O9G O9I O9J OAM P19 P2P PATMY PF0 PQBIZ PQBZA PQQKQ PROAC PSQYO PT4 PT5 PYCSY Q2X QOK QOS R89 R9I RHV RNI RNS ROL RSV RZK S16 S1Z S26 S27 S28 S3B SAP SCK SCLPG SDH SEV SHX SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE SZN T13 T16 TSG TSK TSV TUC TUS U2A U9L UG4 UKHRP UOJIU UTJUX UZXMN VC2 VFIZW W23 W48 WK6 WK8 Y6R YLTOR Z45 Z5O Z7R Z7U Z7V Z7W Z7X Z7Y Z7Z Z81 Z83 Z85 Z86 Z87 Z8P Z8Q Z8S ZMTXR ~02 ~KM AAPKM AAYXX ABBRH ABDBE ABFSG ABRTQ ACSTC AEZWR AFDZB AFHIU AFOHR AHPBZ AHWEU AIXLP ATHPR AYFIA CITATION PHGZM PHGZT PJZUB PPXIY PUEGO ADHKG NPM 7QL 7SN 7T7 7TV 7U7 7XB 8FD 8FK C1K FR3 K9. L.- M7N P64 PKEHL PQEST PQUKI Q9U 7X8 7S9 L.6  | 
    
| ID | FETCH-LOGICAL-c408t-7bcfe536e755804e13716b62aa3b225ace3039b42dce60f6a54847bac5706f203 | 
    
| IEDL.DBID | BENPR | 
    
| ISSN | 1614-7499 0944-1344  | 
    
| IngestDate | Fri Sep 05 09:46:23 EDT 2025 Thu Oct 02 06:54:23 EDT 2025 Tue Oct 07 06:44:15 EDT 2025 Thu Apr 03 07:05:21 EDT 2025 Thu Apr 24 23:02:08 EDT 2025 Wed Oct 01 04:12:32 EDT 2025 Fri Feb 21 02:40:59 EST 2025  | 
    
| IsPeerReviewed | true | 
    
| IsScholarly | true | 
    
| Issue | 59 | 
    
| Keywords | Water quality forecasting Non-dominated genetic algorithm (NSGA-II) Single- and multi-objective optimization algorithms Ensemble model Deep learning (DL)  | 
    
| Language | English | 
    
| License | 2023. The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature. | 
    
| LinkModel | DirectLink | 
    
| MergedId | FETCHMERGED-LOGICAL-c408t-7bcfe536e755804e13716b62aa3b225ace3039b42dce60f6a54847bac5706f203 | 
    
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23  | 
    
| ORCID | 0000-0002-3740-4389 | 
    
| PMID | 37996598 | 
    
| PQID | 2904823382 | 
    
| PQPubID | 54208 | 
    
| PageCount | 25 | 
    
| ParticipantIDs | proquest_miscellaneous_3153555332 proquest_miscellaneous_2893834180 proquest_journals_2904823382 pubmed_primary_37996598 crossref_citationtrail_10_1007_s11356_023_30774_4 crossref_primary_10_1007_s11356_023_30774_4 springer_journals_10_1007_s11356_023_30774_4  | 
    
| ProviderPackageCode | CITATION AAYXX  | 
    
| PublicationCentury | 2000 | 
    
| PublicationDate | 2023-12-01 | 
    
| PublicationDateYYYYMMDD | 2023-12-01 | 
    
| PublicationDate_xml | – month: 12 year: 2023 text: 2023-12-01 day: 01  | 
    
| PublicationDecade | 2020 | 
    
| PublicationPlace | Berlin/Heidelberg | 
    
| PublicationPlace_xml | – name: Berlin/Heidelberg – name: Germany – name: Heidelberg  | 
    
| PublicationTitle | Environmental science and pollution research international | 
    
| PublicationTitleAbbrev | Environ Sci Pollut Res | 
    
| PublicationTitleAlternate | Environ Sci Pollut Res Int | 
    
| PublicationYear | 2023 | 
    
| Publisher | Springer Berlin Heidelberg Springer Nature B.V  | 
    
| Publisher_xml | – name: Springer Berlin Heidelberg – name: Springer Nature B.V  | 
    
| References | LiWWeiYAnDJiaoYWeiQLSTM-TCN: dissolved oxygen prediction in aquaculture, based on combined model of long short-term memory network and temporal convolutional networkEnviron Sci Pollut Res20222926395453955610.1007/s11356-022-18914-8 BarzegarRAsghari MoghaddamACombining the advantages of neural networks using the concept of committee machine in the groundwater salinity predictionModel Earth Syst Environ2016211310.1007/s40808-015-0072-8 Ehsani M, Moghadas Nejad F, Hajikarimi P (2022) Developing an optimized faulting prediction model in jointed plain concrete pavement using artificial neural networks and random forest methods. Intl J Pavement Eng, 1-16. https://doi.org/10.1080/10298436.2022.2057975 ChenKChenHZhouCHuangYQiXShenRLiuFZuoMZouXWangJZhangYComparative analysis of surface water quality prediction performance and identification of key water parameters using different machine learning models based on big dataWater Res20201711154541:CAS:528:DC%2BB3cXnvFWisw%3D%3D10.1016/j.watres.2019.115454 BarzegarRAsghari MoghaddamAAdamowskiJFijaniEComparison of machine learning models for predicting fluoride contamination in groundwaterStoch Env Res Risk A2017312705271810.1007/s00477-016-1338-z HajikarimiPEhsaniMHalouiYETehraniFFAbsiJNejadFMFractional viscoelastic modeling of modified asphalt mastics using response surface methodConstr Build Mater20223171259581:CAS:528:DC%2BB38XpvVaquw%3D%3D ZhuSHeddamSPrediction of dissolved oxygen in urban rivers at the Three Gorges Reservoir, China: extreme learning machines (ELM) versus artificial neural network (ANN)Water Qual Res J20205511061181:CAS:528:DC%2BB3cXhtVSkt7%2FE WangGJiaQSZhouMBiJQiaoJAbusorrahAArtificial neural networks for water quality soft-sensing in wastewater treatment: a reviewArtif Intell Rev2022551565587 Boyd CE (2020) Eutrophication. Water quality: an introduction, 311-322. https://doi.org/10.1007/978-3-030-23335-8_15 Lin L, Yang H, Xu X (2022) Effects of water pollution on human health and disease heterogeneity: a review. Front Environ Sci, 975 UddinMGNashSOlbertAIA review of water quality index models and their use for assessing surface water qualityEcol Indic20211221072181:CAS:528:DC%2BB3MXkt1Ogsg%3D%3D CaoXYaoJXuZMengDHyperspectral image classification with convolutional neural network and active learningIEEE Trans Geosci Remote Sens20205874604461610.1109/TGRS.2020.2964627 GoodfellowIBengioYCourvilleADeep learning2016MIT press Ghadermazi P, Re A, Ricci L, Chan SHJ (2022) Metabolic engineering interventions for sustainable 2, 3-butanediol production in gas-fermenting clostridium autoethanogenum. mSystems 7(2):e01111–e01121 RizalNNMHayderGYussofSRiver water quality prediction and analysis–deep learning predictive models approachSustainability challenges and delivering practical engineering solutions: resources, materials, energy, and buildings2023ChamSpringer International Publishing252910.1007/978-3-031-26580-8_5 KatochSChauhanSSKumarVA review on genetic algorithm: past, present, and futureMultimed Tools Appl20218080918126 Graves A (2012) Sequence transduction with recurrent neural networks. arXiv preprint arXiv:1211.3711 LiLJiangPXuHLinGGuoDWuHWater quality prediction based on recurrent neural network and improved evidence theory: a case study of Qiantang river, ChinaEnviron Sci Pollut Res201926198791989610.1007/s11356-019-05116-y PrasadDVVVenkataramanaLYKumarPSPrasannamedhaGHarshanaSSrividyaSJIndragantiSAnalysis and prediction of water quality using deep learning and auto deep learning techniquesSci Total Environ20228211533111:CAS:528:DC%2BB38XisVCjtbk%3D NiQCaoXTanCPengWKangXAn improved graph convolutional network with feature and temporal attention for multivariate water quality predictionEnviron Sci Pollut Res20233051151611529 BarzegarRAalamiMTAdamowskiJShort-term water quality variable prediction using a hybrid CNN–LSTM deep learning modelStoch Env Res Risk A202034241543310.1007/s00477-020-01776-2 Yan T, Shen SL, Zhou A (2022) Indices and models of surface water quality assessment: review and perspectives. Environ Pollut, 119611. https://doi.org/10.1016/j.envpol.2022.119611 BarzegarRAsghari MoghaddamAAdamowskiJOzga-ZielinskiBMulti-step water quality forecasting using a boosting ensemble multi-wavelet extreme learning machine modelStoch Env Res Risk A20183279981310.1007/s00477-017-1394-z ChenWBLiuWCArtificial neural network modeling of dissolved oxygen in reservoirEnviron Monit Assess2014186120312171:CAS:528:DC%2BC3sXhsFyrsbvJ10.1007/s10661-013-3450-6 ChapmanDVSullivanTThe role of water quality monitoring in the sustainable use of ambient watersOne Earth20225213213710.1016/j.oneear.2022.01.008 MaZSongXWanRGaoLJiangDArtificial neural network modeling of the water quality in intensive Litopenaeus vannamei shrimp tanksAquaculture20144333073121:CAS:528:DC%2BC2cXhtlaiu7%2FO10.1016/j.aquaculture.2014.06.029 CholletFDeep learning with Python2021Simon and Schuster Sivanandam SN, Deepa SN, Sivanandam SN, Deepa SN (2008) Genetic algorithms (pp. 15-37). Springer Berlin Heidelberg SahraeiAChamorroAKraftPBreuerLApplication of machine learning models to predict maximum event water fractions in streamflowFront Water20213652100 van der Schriek T, Giannakopoulos C, Varotsos KV (2020) The impact of future climate change on bean cultivation in the Prespa Lake catchment, northern Greece. Euro-Mediterr J Environ Integr 5:1–10 Ewuzie U, Bolade OP, Egbedina AO (2022) Application of deep learning and machine learning methods in water quality modeling and prediction: a review. Current Trends and Advances in Computer-Aided Intelligent Environmental Data Engineering, pp.185-218. https://doi.org/10.1016/B978-0-323-85597-6.00020-3 LuoWZhuSWuSDaiJComparing artificial intelligence techniques for chlorophyll-a prediction in US lakesEnviron Sci Pollut Res20192630524305321:CAS:528:DC%2BC1MXhs12rtLnK10.1007/s11356-019-06360-y ShenCA transdisciplinary review of deep learning research and its relevance for water resources scientistsWater Resour Res201854118558859310.1029/2018WR022643 ElkiranGNouraniVAbbaSIMulti-step ahead modelling of river water quality parameters using ensemble artificial intelligence-based approachJ Hydrol20195771239621:CAS:528:DC%2BC1MXhsFarur%2FJ10.1016/j.jhydrol.2019.123962 ZhouHYanPHuangQWuDPeiJZhangLWeighted average selective ensemble strategy of deep convolutional models based on grey wolf optimizer and its application in rotating machinery fault diagnosisExpert Syst Appl2023234121076 BuiDTKhosraviKTiefenbacherJNguyenHKazakisNImproving prediction of water quality indices using novel hybrid machine-learning algorithmsSci Total Environ20207211376121:CAS:528:DC%2BB3cXkslGiu7s%3D10.1016/j.scitotenv.2020.137612 ZamaniMGNikooMRNiknazarFAl-RawasGAl-WardyMGandomiAHA multi-model data fusion methodology for reservoir water quality based on machine learning algorithms and bayesian maximum entropyJ Clean Prod2023416137885 KhosraviKGolkarianABooijMJBarzegarRSunWYaseenZMMosaviAImproving daily stochastic streamflow prediction: comparison of novel hybrid data-mining algorithmsHydrol Sci J202166914571474 MeydaniADehghanipourASchoupsGTajrishyMDaily reservoir inflow forecasting using weather forecast downscaling and rainfall-runoff modeling: application to Urmia Lake basin, IranJ Hydrol Region Stud20224410122810.1016/j.ejrh.2022.101228 ShinYKimTHongSLeeSLeeEHongSLeeCKimTParkMSParkJHeoTYPrediction of chlorophyll-a concentrations in the Nakdong river using machine learning methodsWater202012618221:CAS:528:DC%2BB3cXitlCgs7bE10.3390/w12061822 TziritisEPEnvironmental monitoring of Micro Prespa Lake basin (Western Macedonia, Greece): hydrogeochemical characteristics of water resources and quality trendsEnviron Monit Assess20141867455345681:CAS:528:DC%2BC2cXkvF2ms7g%3D Bai S, Kolter JZ, Koltun V (2018) An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. arXiv preprint arXiv:1803.01271. https://doi.org/10.48550/arXiv.1803.01271 SakaaBElbeltagiABoudibiSChaffaïHIslamARMTKulimushiLCChoudhariPHaniABrouziyneYWongYJWater quality index modeling using random forest and improved SMO algorithm for support vector machine in Saf-Saf river basinEnviron Sci Pollut Res2022293248491485081:CAS:528:DC%2BB38Xht12mt7jI10.1007/s11356-022-18644-x XuJAnctilFBoucherMAExploring hydrologic post-processing of ensemble streamflow forecasts based on affine kernel dressing and non-dominated sorting genetic algorithm IIHydrol Earth Syst Sci202226410011017 JiangJTangSHanDFuGSolomatineDZhengYA comprehensive review on the design and optimization of surface water quality monitoring networksEnviron Model Softw202013210479210.1016/j.envsoft.2020.104792 Gao X, Ren B, Zhang H, Sun B, Li J, Xu J, Li K (2020) An ensemble imbalanced classification method based on model dynamic selection driven by data partition hybrid sampling. Expert Syst Appl 160:113660 UddinMGRahmanANashSDigantaMTMSajibAMMoniruzzamanMOlbertAIMarine waters assessment using improved water quality model incorporating machine learning approachesJ Environ Manag20233441183681:CAS:528:DC%2BB3sXhtlykt7nM Vinçon-LeiteBCasenaveCModelling eutrophication in lake ecosystems: a reviewSci Total Environ201965129853001 Chen X, Dai Y (2020) Research on an improved ant colony algorithm fusion with genetic algorithm for route planning. In: 2020 IEEE 4th Information technology, networking, electronic and automation control conference (ITNEC) 1:1273–1278. IEEE. https://doi.org/10.1109/ITNEC48623.2020.9084730 Barzegar R, Aalami MT, Adamowski J (2021) Coupling a hybrid CNN-LSTM deep learning model with a boundary corrected maximal overlap discrete wavelet transform for multiscale lake water level forecasting. J Hydrol 598:126196 Card D, Zhang M, Smith NA (2019) Deep weighted averaging classifiers. In Proceedings of the conference on fairness, accountability, and transparency (pp. 369-378) SultanaFSufianADuttaPEvolution of image segmentation using deep convolutional neural network: a surveyKnowl-Based Syst202020110606210.1016/j.knosys.2020.106062 VirroHKmochAVainuMUuemaaERandom forest-based mod LO Chua (30774_CR29) 1993; 40 R Barzegar (30774_CR7) 2020; 34 30774_CR4 ZH Zhou (30774_CR120) 2012 30774_CR5 C Ortiz-Lopez (30774_CR79) 2022; 11 T Dawood (30774_CR33) 2021; 291 30774_CR1 30774_CR2 30774_CR30 30774_CR32 NNM Rizal (30774_CR85) 2023 J Xu (30774_CR112) 2022; 26 M Dai (30774_CR31) 2022; 254 30774_CR34 30774_CR36 30774_CR37 MG Uddin (30774_CR100) 2022; 321 A Tang (30774_CR97) 2022; 46 F Zhang (30774_CR119) 2019; 74 F Chollet (30774_CR27) 2021 S Jahanshahi (30774_CR57) 2019; 64 K Greff (30774_CR52) 2016; 28 30774_CR20 H Zhou (30774_CR121) 2016; 216 G Elkiran (30774_CR39) 2019; 577 X Cao (30774_CR111) 2020; 58 W Luo (30774_CR69) 2019; 26 M Papenfus (30774_CR80) 2020; 192 30774_CR25 L Li (30774_CR63) 2019; 26 30774_CR26 MG Uddin (30774_CR104) 2023; 344 C Qi (30774_CR83) 2020; 8 H Virro (30774_CR107) 2022; 840 H Zhou (30774_CR122) 2023; 234 PL Georgescu (30774_CR47) 2023; 879 BM Haverkos (30774_CR56) 2016; 11 J Pyo (30774_CR82) 2020; 186 DE Goldberg (30774_CR49) 1989 MHDM Ribeiro (30774_CR84) 2020; 86 TY Tan (30774_CR96) 2019; 7 S Katoch (30774_CR60) 2021; 80 WB Chen (30774_CR19) 2014; 186 30774_CR93 30774_CR94 30774_CR16 30774_CR17 30774_CR12 DV Chapman (30774_CR18) 2022; 5 A El Bilali (30774_CR38) 2020; 19 30774_CR14 MG Zamani (30774_CR116) 2023; 341 LR Medsker (30774_CR72) 2001; 5 A Ly (30774_CR70) 2018; 72 A Meydani (30774_CR73) 2022; 44 TA Sinshaw (30774_CR92) 2019; 145 K Chen (30774_CR22) 2020; 171 Q Zhang (30774_CR118) 2007; 11 MG Uddin (30774_CR99) 2021; 122 MG Uddin (30774_CR102) 2023; 868 E Fijani (30774_CR42) 2019; 648 Q Ni (30774_CR76) 2023; 30 30774_CR86 C Shen (30774_CR90) 2018; 54 A Bhardwaj (30774_CR13) 2022; 29 AA Nadiri (30774_CR75) 2022; 14 Y Wang (30774_CR109) 2023; 121 W Li (30774_CR64) 2022; 29 B Vinçon-Leite (30774_CR106) 2019; 651 J Guo (30774_CR53) 2018; 85 I Goodfellow (30774_CR50) 2016 H Chen (30774_CR21) 2020; 240 MR Nikoo (30774_CR77) 2013; 27 G Wang (30774_CR108) 2022; 55 S Zhu (30774_CR124) 2020; 55 30774_CR74 MG Uddin (30774_CR103) 2023; 385 B Sakaa (30774_CR88) 2022; 29 K Deb (30774_CR35) 2002; 6 30774_CR105 MG Zamani (30774_CR114) 2022; 15 K Nova (30774_CR78) 2023; 7 DVV Prasad (30774_CR81) 2022; 821 J Schmidhuber (30774_CR89) 1997; 9 K Khosravi (30774_CR61) 2021; 66 R Barzegar (30774_CR11) 2016; 30 F Sultana (30774_CR95) 2020; 201 J Jiang (30774_CR59) 2020; 132 A Sahraei (30774_CR87) 2021; 3 30774_CR62 R Barzegar (30774_CR6) 2016; 2 30774_CR67 R Barzegar (30774_CR9) 2018; 32 Z Liang (30774_CR66) 2020; 581 P Hajikarimi (30774_CR54) 2022; 317 Z Ma (30774_CR71) 2014; 433 JS Chou (30774_CR28) 2018; 44 30774_CR113 P Liu (30774_CR68) 2019; 11 MG Uddin (30774_CR101) 2022; 219 30774_CR51 P Babuji (30774_CR3) 2023; 15 Y Shin (30774_CR91) 2020; 12 DL Hall (30774_CR55) 1997; 85 R Barzegar (30774_CR10) 2019; 577 L Chen (30774_CR24) 2023; 146 30774_CR58 DT Bui (30774_CR15) 2020; 721 L Chen (30774_CR23) 2023; 146 MG Zamani (30774_CR115) 2023; 416 30774_CR123 X Li (30774_CR65) 2017; 9 30774_CR41 J Wu (30774_CR110) 2022; 14 30774_CR43 R Barzegar (30774_CR8) 2017; 31 30774_CR44 30774_CR40 EP Tziritis (30774_CR98) 2014; 186 30774_CR45 30774_CR46 30774_CR48 30774_CR117  | 
    
| References_xml | – reference: LiangZZouRChenXRenTSuHLiuYSimulate the forecast capacity of a complicated water quality model using the long short-term memory approachJ Hydrol20205811244321:CAS:528:DC%2BC1MXisVygur7I10.1016/j.jhydrol.2019.124432 – reference: ZamaniMGNikooMRNiknazarFAl-RawasGAl-WardyMGandomiAHA multi-model data fusion methodology for reservoir water quality based on machine learning algorithms and bayesian maximum entropyJ Clean Prod2023416137885 – reference: ZhangFLiJShenQZhangBTianLYeHWangSLuZA soft-classification-based chlorophyll-a estimation method using MERIS data in the highly turbid and eutrophic Taihu LakeInt J Appl Earth Obs Geoinf20197413814910.1016/j.jag.2018.07.018 – reference: ChouJSHoCCHoangHSDetermining quality of water in reservoir using machine learningEcological Inform201844577510.1016/j.ecoinf.2018.01.005 – reference: Graves A (2012) Sequence transduction with recurrent neural networks. arXiv preprint arXiv:1211.3711 – reference: BabujiPThirumalaisamySDuraisamyKPeriyasamyGHuman health risks due to exposure to water pollution: a reviewWater2023151425321:CAS:528:DC%2BB3sXhs1Knur3F10.3390/w15142532 – reference: Farshbaf Aghajani H, Karimi S, Hatefi Diznab M (2023) An experimental and machine-learning investigation into compaction of the cemented sand-gravel mixtures and influencing factors. Transp Infrastruct Geotechnol 10(5):816–855 – reference: KatochSChauhanSSKumarVA review on genetic algorithm: past, present, and futureMultimed Tools Appl20218080918126 – reference: Vinçon-LeiteBCasenaveCModelling eutrophication in lake ecosystems: a reviewSci Total Environ201965129853001 – reference: LiuPWangJSangaiahAKXieYYinXAnalysis and prediction of water quality using LSTM deep neural networks in IoT environmentSustainability201911720581:CAS:528:DC%2BB3cXjsVCnsLk%3D10.3390/su11072058 – reference: Zounemat-Kermani M, Batelaan O, Fadaee M, Hinkelmann R (2021) Ensemble machine learning paradigms in hydrology: a review. J Hydrol 598:126266 – reference: NadiriAASedghiZBarzegarRNikooMREstablishing a data fusion water resources risk map based on aggregating drinking water quality and human health risk indicesWater2022142133901:CAS:528:DC%2BB38XivFehs7zJ10.3390/w14213390 – reference: Cho K, Van Merriënboer B, Gulcehre C, Bahdanau D, Bougares F, Schwenk H, Bengio Y (2014) Learning phrase representations using RNN encoder-decoder for statistical machine translation. arXiv preprint arXiv: 1406.1078. https://doi.org/10.48550/arXiv.1406.1078 – reference: Dargi M, Khamehchi E, Mahdavi Kalatehno J (2023) Optimizing acidizing design and effectiveness assessment with machine learning for predicting post-acidizing permeability. Sci Rep 13(1):11851 – reference: MedskerLRJainLCRecurrent neural networksDesign Appl200156467 – reference: LiWWeiYAnDJiaoYWeiQLSTM-TCN: dissolved oxygen prediction in aquaculture, based on combined model of long short-term memory network and temporal convolutional networkEnviron Sci Pollut Res20222926395453955610.1007/s11356-022-18914-8 – reference: ShinYKimTHongSLeeSLeeEHongSLeeCKimTParkMSParkJHeoTYPrediction of chlorophyll-a concentrations in the Nakdong river using machine learning methodsWater202012618221:CAS:528:DC%2BB3cXitlCgs7bE10.3390/w12061822 – reference: Gao X, Ren B, Zhang H, Sun B, Li J, Xu J, Li K (2020) An ensemble imbalanced classification method based on model dynamic selection driven by data partition hybrid sampling. Expert Syst Appl 160:113660 – reference: Barzegar R, Aalami MT, Adamowski J (2021) Coupling a hybrid CNN-LSTM deep learning model with a boundary corrected maximal overlap discrete wavelet transform for multiscale lake water level forecasting. J Hydrol 598:126196 – reference: Lin L, Yang H, Xu X (2022) Effects of water pollution on human health and disease heterogeneity: a review. Front Environ Sci, 975 – reference: SakaaBElbeltagiABoudibiSChaffaïHIslamARMTKulimushiLCChoudhariPHaniABrouziyneYWongYJWater quality index modeling using random forest and improved SMO algorithm for support vector machine in Saf-Saf river basinEnviron Sci Pollut Res2022293248491485081:CAS:528:DC%2BB38Xht12mt7jI10.1007/s11356-022-18644-x – reference: Bahrami M, Talebbeydokhti N, Rakhshandehroo G, Nikoo MR, Adamowski JF (2023) A fusion-based data assimilation framework for runoff prediction considering multiple sources of precipitation. Hydrological Sciences Journal, (just-accepted). https://doi.org/10.1080/02626667.2023.2180375 – reference: BarzegarRAsghari MoghaddamAAdamowskiJOzga-ZielinskiBMulti-step water quality forecasting using a boosting ensemble multi-wavelet extreme learning machine modelStoch Env Res Risk A20183279981310.1007/s00477-017-1394-z – reference: GeorgescuPLMoldovanuSIticescuCCalmucMCalmucVTopaCMoraruLAssessing and forecasting water quality in the Danube river by using neural network approachesSci Total Environ20238791629981:CAS:528:DC%2BB3sXms1Oks70%3D – reference: Géron A (2022) Hands-on machine learning with Scikit-Learn, Keras, and TensorFlow. O'Reilly Media, Inc. – reference: MaZSongXWanRGaoLJiangDArtificial neural network modeling of the water quality in intensive Litopenaeus vannamei shrimp tanksAquaculture20144333073121:CAS:528:DC%2BC2cXhtlaiu7%2FO10.1016/j.aquaculture.2014.06.029 – reference: TanTYZhangLLimCPFieldingBYuYAndersonEEvolving ensemble models for image segmentation using enhanced particle swarm optimizationIEEE access201973400434019 – reference: Fu Y, Hu Z, Zhao Y, Huang M (2021) A long-term water quality prediction method based on the temporal convolutional network in smart mariculture. Water, 13(20), p.2907. https://doi.org/10.3390/w13202907 – reference: LuoWZhuSWuSDaiJComparing artificial intelligence techniques for chlorophyll-a prediction in US lakesEnviron Sci Pollut Res20192630524305321:CAS:528:DC%2BC1MXhs12rtLnK10.1007/s11356-019-06360-y – reference: JahanshahiSKerachianRAn evidential reasoning-based sustainability index for water resources managementHydrol Sci J201964101223123910.1080/02626667.2019.1628347 – reference: ChenKChenHZhouCHuangYQiXShenRLiuFZuoMZouXWangJZhangYComparative analysis of surface water quality prediction performance and identification of key water parameters using different machine learning models based on big dataWater Res20201711154541:CAS:528:DC%2BB3cXnvFWisw%3D%3D10.1016/j.watres.2019.115454 – reference: GuoJZhangCZhengGXueJZhangLThe establishment of season-specific eutrophication assessment standards for a water-supply reservoir located in Northeast China based on chlorophyll-a levelsEcol Indic20188511201:CAS:528:DC%2BC2sXhs1yrsL3E10.1016/j.ecolind.2017.09.056 – reference: Carcano EC, Bartolini P, Muselli M, Piroddi L (2008) Jordan recurrent neural network versus IHACRES in modelling daily streamflows. J Hydrol 362(3-4):291–307 – reference: El BilaliATalebAPrediction of irrigation water quality parameters using machine learning models in a semi-arid environmentJ Saudi Soc Agric Sci202019743945110.1016/j.jssas.2020.08.001 – reference: BarzegarRAsghari MoghaddamACombining the advantages of neural networks using the concept of committee machine in the groundwater salinity predictionModel Earth Syst Environ2016211310.1007/s40808-015-0072-8 – reference: BuiDTKhosraviKTiefenbacherJNguyenHKazakisNImproving prediction of water quality indices using novel hybrid machine-learning algorithmsSci Total Environ20207211376121:CAS:528:DC%2BB3cXkslGiu7s%3D10.1016/j.scitotenv.2020.137612 – reference: BarzegarRGhasriMQiZQuiltyJAdamowskiJUsing bootstrap ELM and LSSVM models to estimate river ice thickness in the Mackenzie river basin in the Northwest Territories, CanadaJ Hydrol2019577123903 – reference: ZhouHYanPHuangQWuDPeiJZhangLWeighted average selective ensemble strategy of deep convolutional models based on grey wolf optimizer and its application in rotating machinery fault diagnosisExpert Syst Appl2023234121076 – reference: Boyd CE (2020) Eutrophication. Water quality: an introduction, 311-322. https://doi.org/10.1007/978-3-030-23335-8_15 – reference: ZhuSHeddamSPrediction of dissolved oxygen in urban rivers at the Three Gorges Reservoir, China: extreme learning machines (ELM) versus artificial neural network (ANN)Water Qual Res J20205511061181:CAS:528:DC%2BB3cXhtVSkt7%2FE – reference: WangGJiaQSZhouMBiJQiaoJAbusorrahAArtificial neural networks for water quality soft-sensing in wastewater treatment: a reviewArtif Intell Rev2022551565587 – reference: SahraeiAChamorroAKraftPBreuerLApplication of machine learning models to predict maximum event water fractions in streamflowFront Water20213652100 – reference: SchmidhuberJHochreiterSLong short-term memoryNeural Comput1997981735178010.1162/neco.1997.9.8.1735 – reference: ElkiranGNouraniVAbbaSIMulti-step ahead modelling of river water quality parameters using ensemble artificial intelligence-based approachJ Hydrol20195771239621:CAS:528:DC%2BC1MXhsFarur%2FJ10.1016/j.jhydrol.2019.123962 – reference: BhardwajADagarVKhanMOAggarwalAAlvaradoRKumarMProshadRSmart IoT and machine learning-based framework for water quality assessment and device component monitoringEnviron Sci Pollut Res202229304601846036 – reference: ZhangQLiHMOEA/D: a multiobjective evolutionary algorithm based on decompositionIEEE Trans Evol Comput2007116712731 – reference: ChenLWuTWangZLinXCaiYA novel hybrid BPNN model based on adaptive evolutionary artificial bee colony algorithm for water quality index predictionEcol Indic20231461098821:CAS:528:DC%2BB3sXoslGhtA%3D%3D – reference: CholletFDeep learning with Python2021Simon and Schuster – reference: GoldbergDEGenetic algorithms in search, optimization, and machine learning1989Addison-Wesley – reference: RizalNNMHayderGYussofSRiver water quality prediction and analysis–deep learning predictive models approachSustainability challenges and delivering practical engineering solutions: resources, materials, energy, and buildings2023ChamSpringer International Publishing252910.1007/978-3-031-26580-8_5 – reference: BarzegarRMoghaddamAABaghbanHA supervised committee machine artificial intelligent for improving DRASTIC method to assess groundwater contamination risk: a case study from Tabriz plain aquifer, IranStoch Env Res Risk A201630883899 – reference: Dehghani R, Torabi Poudeh H, Izadi Z (2021) Dissolved oxygen concentration predictions for running waters with using hybrid machine learning techniques. Modeling Earth Systems and Environment, pp.1-15. https://doi.org/10.1007/s40808-021-01253-x – reference: LiXShaJWangZLChlorophyll-a prediction of lakes with different water quality patterns in China based on hybrid neural networksWater2017975241:CAS:528:DC%2BC1cXitlSmt7%2FJ10.3390/w9070524 – reference: WangYKhodadadzadehMZurita-MillaRSpatial+: a new cross-validation method to evaluate geospatial machine learning modelsInt J Appl Earth Obs Geoinf202312110336410.1016/j.jag.2023.103364 – reference: DebKPratapAAgarwalSMeyarivanTAMTA fast and elitist multiobjective genetic algorithm: NSGA-IIIEEE Trans Evol Comput200262182197 – reference: SultanaFSufianADuttaPEvolution of image segmentation using deep convolutional neural network: a surveyKnowl-Based Syst202020110606210.1016/j.knosys.2020.106062 – reference: ChenLWuTWangZLinXCaiYA novel hybrid BPNN model based on adaptive evolutionary artificial bee colony algorithm for water quality index predictionEcol Indic20231461098821:CAS:528:DC%2BB3sXoslGhtA%3D%3D10.1016/j.ecolind.2023.109882 – reference: Mirjalili S, Mirjalili S (2019) Genetic algorithm. Evolutionary algorithms and neural networks: theory and applications, 43-55. https://doi.org/10.1007/978-3-319-93025-1_4 – reference: Yan T, Shen SL, Zhou A (2022) Indices and models of surface water quality assessment: review and perspectives. Environ Pollut, 119611. https://doi.org/10.1016/j.envpol.2022.119611 – reference: HajikarimiPEhsaniMHalouiYETehraniFFAbsiJNejadFMFractional viscoelastic modeling of modified asphalt mastics using response surface methodConstr Build Mater20223171259581:CAS:528:DC%2BB38XpvVaquw%3D%3D – reference: LiLJiangPXuHLinGGuoDWuHWater quality prediction based on recurrent neural network and improved evidence theory: a case study of Qiantang river, ChinaEnviron Sci Pollut Res201926198791989610.1007/s11356-019-05116-y – reference: FijaniEBarzegarRDeoRTziritisESkordasKDesign and implementation of a hybrid model based on two-layer decomposition method coupled with extreme learning machines to support real-time environmental monitoring of water quality parametersSci Total Environ20196488398531:CAS:528:DC%2BC1cXhsFGqsLrE10.1016/j.scitotenv.2018.08.221 – reference: XuJAnctilFBoucherMAExploring hydrologic post-processing of ensemble streamflow forecasts based on affine kernel dressing and non-dominated sorting genetic algorithm IIHydrol Earth Syst Sci202226410011017 – reference: NiQCaoXTanCPengWKangXAn improved graph convolutional network with feature and temporal attention for multivariate water quality predictionEnviron Sci Pollut Res20233051151611529 – reference: Gaya MS, Abba SI, Abdu AM, Tukur AI, Saleh MA, Esmaili P, Wahab NA (2020) Estimation of water quality index using artificial intelligence approaches and multi-linear regression. Int. J. Artif. Intell. ISSN, 2252, 8938 – reference: UddinMGRahmanANashSDigantaMTMSajibAMMoniruzzamanMOlbertAIMarine waters assessment using improved water quality model incorporating machine learning approachesJ Environ Manag20233441183681:CAS:528:DC%2BB3sXhtlykt7nM – reference: DaiMYangHYangFZhangZYuYLiuGFengXMulti-strategy Ensemble Non-dominated sorting genetic Algorithm-II (MENSGA-II) and application in energy-enviro-economic multi-objective optimization of separation for isopropyl alcohol/diisopropyl ether/water mixtureEnergy20222541243761:CAS:528:DC%2BB38XitFSru7%2FP – reference: TziritisEPEnvironmental monitoring of Micro Prespa Lake basin (Western Macedonia, Greece): hydrogeochemical characteristics of water resources and quality trendsEnviron Monit Assess20141867455345681:CAS:528:DC%2BC2cXkvF2ms7g%3D – reference: VirroHKmochAVainuMUuemaaERandom forest-based modeling of stream nutrients at national level in a data-scarce regionSci Total Environ20228401566131:CAS:528:DC%2BB38XhsFyhurnL – reference: van der Schriek T, Giannakopoulos C, Varotsos KV (2020) The impact of future climate change on bean cultivation in the Prespa Lake catchment, northern Greece. Euro-Mediterr J Environ Integr 5:1–10 – reference: PapenfusMSchaefferBPollardAILoftinKExploring the potential value of satellite remote sensing to monitor chlorophyll-a for US lakes and reservoirsEnviron Monit Assess2020192128081:CAS:528:DC%2BB3MXosVers74%3D10.1007/s10661-020-08631-5 – reference: QiCHuangSWangXMonitoring water quality parameters of Taihu lake based on remote sensing images and LSTM-RNNIEEE Access20208188068188081 – reference: UddinMGNashSOlbertAIA review of water quality index models and their use for assessing surface water qualityEcol Indic20211221072181:CAS:528:DC%2BB3MXkt1Ogsg%3D%3D – reference: Song Y, Shen C, Wang Y (2023) Multi-objective optimal reservoir operation considering algal bloom control in reservoirs. J Environ Manage 344:118436 – reference: Rozinajová V, Ezzeddine AB, Lóderer M, Loebl J, Magyar R, Vrablecová P (2018) Computational intelligence in smart grid environment. In Computational intelligence for multimedia big data on the cloud with engineering Applications (pp. 23-59). Academic Press. https://doi.org/10.1016/B978-0-12-813314-9.00002-5 – reference: Choi JH, Kim J, Won J, Min O (2019) Modelling chlorophyll-a concentration using deep neural networks considering extreme data imbalance and skewness. In 2019 21st International Conference on Advanced Communication Technology (ICACT) (pp. 631-634). IEEE. https://doi.org/10.23919/ICACT.2019.8702027 – reference: Bai S, Kolter JZ, Koltun V (2018) An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. arXiv preprint arXiv:1803.01271. https://doi.org/10.48550/arXiv.1803.01271 – reference: UddinMGNashSDigantaMTMRahmanAOlbertAIRobust machine learning algorithms for predicting coastal water quality indexJ Environ Manag2022321115923 – reference: Ortiz-LopezCBouchardCRodriguezMMachine learning models with potential application to predict source water quality for treatment purposes: a critical reviewEnviron Technol Rev20221111181471:CAS:528:DC%2BB38XisFegs7jO10.1080/21622515.2022.2118084 – reference: Card D, Zhang M, Smith NA (2019) Deep weighted averaging classifiers. In Proceedings of the conference on fairness, accountability, and transparency (pp. 369-378) – reference: JiangJTangSHanDFuGSolomatineDZhengYA comprehensive review on the design and optimization of surface water quality monitoring networksEnviron Model Softw202013210479210.1016/j.envsoft.2020.104792 – reference: UddinMGNashSRahmanAOlbertAIA sophisticated model for rating water qualitySci Total Environ20238681616141:CAS:528:DC%2BB3sXhvFGhsLk%3D – reference: Jahanshahi S, Kerachian R, Emamjomehzadeh O (2023) A leader-follower framework for sustainable water pricing and allocation. Water Resour Manage 1-18. https://doi.org/10.1007/s11269-023-03428-w – reference: Babatunde OH, Armstrong L, Leng J, Diepeveen D (2014) A genetic algorithm-based feature selection. http://ro.ecu.edu.au/theses/1733 – reference: Azizi K, Diko SK, Saija L, Zamani MG, Meier CI (2022) Integrated community-based approaches to urban pluvial flooding research, trends and future directions: A review. Urban Clim 44:101237 – reference: ChenHChenAXuLXieHQiaoHLinQCaiKA deep learning CNN architecture applied in smart near-infrared analysis of water pollution for agricultural irrigation resourcesAgric Water Manag202024010630310.1016/j.agwat.2020.106303 – reference: Ewuzie U, Bolade OP, Egbedina AO (2022) Application of deep learning and machine learning methods in water quality modeling and prediction: a review. Current Trends and Advances in Computer-Aided Intelligent Environmental Data Engineering, pp.185-218. https://doi.org/10.1016/B978-0-323-85597-6.00020-3 – reference: ZamaniMGMoridiAYazdiJGroundwater management in arid and semi-arid regionsArab J Geosci202215436210.1007/s12517-022-09546-w – reference: NikooMRKarimiAKerachianRPoorsepahy-SamianHDaneshmandFRules for optimal operation of reservoir-river-groundwater systems considering water quality targets: application of M5P modelWater Resour Manag2013272771278410.1007/s11269-013-0314-3 – reference: ChenWBLiuWCArtificial neural network modeling of dissolved oxygen in reservoirEnviron Monit Assess2014186120312171:CAS:528:DC%2BC3sXhsFyrsbvJ10.1007/s10661-013-3450-6 – reference: Kouadri S, Pande CB, Panneerselvam B, Moharir KN, Elbeltagi A (2021) Prediction of irrigation groundwater quality parameters using ANN, LSTM, and MLR models. Environ Sci Pollut Res, 1-25. https://doi.org/10.1007/s11356-021-17084-3 – reference: ZamaniMGNikooMRRastadDNematollahiBA comparative study of data-driven models for runoff, sediment, and nitrate forecastingJ Environ Manag20233411180061:CAS:528:DC%2BB3sXpsFyhtb4%3D10.1016/j.jenvman.2023.118006 – reference: BarzegarRAalamiMTAdamowskiJShort-term water quality variable prediction using a hybrid CNN–LSTM deep learning modelStoch Env Res Risk A202034241543310.1007/s00477-020-01776-2 – reference: SinshawTASurbeckCQYasarerHNajjarYArtificial neural network for prediction of total nitrogen and phosphorus in US lakesJ Environ Eng20191456040190321:CAS:528:DC%2BC1MXhtVOhs73P10.1061/(ASCE)EE.1943-7870.0001528 – reference: CaoXYaoJXuZMengDHyperspectral image classification with convolutional neural network and active learningIEEE Trans Geosci Remote Sens20205874604461610.1109/TGRS.2020.2964627 – reference: Chen X, Dai Y (2020) Research on an improved ant colony algorithm fusion with genetic algorithm for route planning. In: 2020 IEEE 4th Information technology, networking, electronic and automation control conference (ITNEC) 1:1273–1278. IEEE. https://doi.org/10.1109/ITNEC48623.2020.9084730 – reference: GoodfellowIBengioYCourvilleADeep learning2016MIT press – reference: MeydaniADehghanipourASchoupsGTajrishyMDaily reservoir inflow forecasting using weather forecast downscaling and rainfall-runoff modeling: application to Urmia Lake basin, IranJ Hydrol Region Stud20224410122810.1016/j.ejrh.2022.101228 – reference: ZhouHDengZXiaYFuMA new sampling method in particle filter based on Pearson correlation coefficientNeurocomputing2016216208215 – reference: UddinMGNashSRahmanAOlbertAIAssessing optimization techniques for improving water quality modelJ Clean Prod2023385135671 – reference: ZhouZHEnsemble methods: foundations and algorithms2012CRC press – reference: BarzegarRAsghari MoghaddamAAdamowskiJFijaniEComparison of machine learning models for predicting fluoride contamination in groundwaterStoch Env Res Risk A2017312705271810.1007/s00477-016-1338-z – reference: Ghadermazi P, Re A, Ricci L, Chan SHJ (2022) Metabolic engineering interventions for sustainable 2, 3-butanediol production in gas-fermenting clostridium autoethanogenum. mSystems 7(2):e01111–e01121 – reference: Ehsani M, Moghadas Nejad F, Hajikarimi P (2022) Developing an optimized faulting prediction model in jointed plain concrete pavement using artificial neural networks and random forest methods. Intl J Pavement Eng, 1-16. https://doi.org/10.1080/10298436.2022.2057975 – reference: ChapmanDVSullivanTThe role of water quality monitoring in the sustainable use of ambient watersOne Earth20225213213710.1016/j.oneear.2022.01.008 – reference: NovaKAI-enabled water management systems: an analysis of system components and interdependencies for water conservationEigenpub Rev Sci Technol202371105124https://studies.eigenpub.com/index.php/erst/article/view/12 – reference: RibeiroMHDMdos Santos CoelhoLEnsemble approach based on bagging, boosting and stacking for short-term prediction in agribusiness time seriesAppl Soft Comput202086105837 – reference: PrasadDVVVenkataramanaLYKumarPSPrasannamedhaGHarshanaSSrividyaSJIndragantiSAnalysis and prediction of water quality using deep learning and auto deep learning techniquesSci Total Environ20228211533111:CAS:528:DC%2BB38XisVCjtbk%3D – reference: GreffKSrivastavaRKKoutníkJSteunebrinkBRSchmidhuberJLSTM: A search space odysseyIEEE Trans Neural Netw Learn Syst2016281022222232 – reference: Sivanandam SN, Deepa SN, Sivanandam SN, Deepa SN (2008) Genetic algorithms (pp. 15-37). Springer Berlin Heidelberg – reference: Deb K, Agrawal S, Pratap A, Meyarivan T (2000) A fast elitist non-dominated sorting genetic algorithm for multi-objective optimization: NSGA-II. In Parallel Problem Solving from Nature PPSN VI: 6th International Conference Paris, France, September 18–20, 2000 Proceedings 6 (pp. 849-858). Springer Berlin Heidelberg. https://doi.org/10.1007/3-540-45356-3_83 – reference: HallDLLlinasJAn introduction to multisensor data fusionProc IEEE199785162310.1109/5.554205 – reference: ShenCA transdisciplinary review of deep learning research and its relevance for water resources scientistsWater Resour Res201854118558859310.1029/2018WR022643 – reference: TangAWangCZhangDZhangKZhouYZhangZA multi-model real covariance-based battery state-of-charge fusion estimation method for electric vehicles using ordered weighted averaging operatorInt J Energy Res202246121727317284 – reference: WuJWangZA hybrid model for water quality prediction based on an artificial neural network, wavelet transform, and long short-term memoryWater20221446101:CAS:528:DC%2BB38XosVOhsbs%3D10.3390/w14040610 – reference: HaverkosBMPanZGruAAFreudAGRabinovitchRXu-WelliverMPorcuPExtranodal NK/T cell lymphoma, nasal type (ENKTL-NT): an update on epidemiology, clinical presentation, and natural history in North American and European casesCurr Hematol Malignancy Reports201611514527 – reference: KhosraviKGolkarianABooijMJBarzegarRSunWYaseenZMMosaviAImproving daily stochastic streamflow prediction: comparison of novel hybrid data-mining algorithmsHydrol Sci J202166914571474 – reference: Zamani MG, Saniei K, Nematollahi B, Zahmatkesh Z, Poor MM, Nikoo MR (2023c) Developing sustainable strategies by LID optimization in response to annual climate change impacts. J Clean Prod 416:137931 – reference: ChuaLORoskaTThe CNN paradigmIEEE Trans Circuits Syst I: Fundamental Theory Appl1993403147156 – reference: LyAMarsmanMWagenmakersEJAnalytic posteriors for Pearson’s correlation coefficientStatistica Neerlandica2018721413 – reference: DawoodTElwakilENovoaHMDelgadoJFGToward urban sustainability and clean potable water: prediction of water quality via artificial neural networksJ Clean Prod20212911252661:CAS:528:DC%2BB3cXisVGktrfE – reference: Chung J, Gulcehre C, Cho K, Bengio Y (2014) Empirical evaluation of gated recurrent neural networks on sequence modeling. arXiv preprint arXiv:1412.3555 – reference: UddinMGNashSRahmanAOlbertAIA comprehensive method for improvement of water quality index (WQI) models for coastal water quality assessmentWater Res20222191185321:CAS:528:DC%2BB38Xht1ansLrF – reference: PyoJParkLJPachepskyYBaekSSKimKChoKHUsing convolutional neural network for predicting cyanobacteria concentrations in river waterWater Res20201861163491:CAS:528:DC%2BB3cXhslehs7rL10.1016/j.watres.2020.116349 – volume: 44 start-page: 57 year: 2018 ident: 30774_CR28 publication-title: Ecological Inform doi: 10.1016/j.ecoinf.2018.01.005 – volume: 74 start-page: 138 year: 2019 ident: 30774_CR119 publication-title: Int J Appl Earth Obs Geoinf doi: 10.1016/j.jag.2018.07.018 – ident: 30774_CR123 doi: 10.1016/j.jhydrol.2021.126266 – volume: 5 start-page: 64 year: 2001 ident: 30774_CR72 publication-title: Design Appl – ident: 30774_CR105 doi: 10.1007/s41207-020-0151-8 – volume: 291 start-page: 125266 year: 2021 ident: 30774_CR33 publication-title: J Clean Prod doi: 10.1016/j.jclepro.2020.125266 – volume: 14 start-page: 3390 issue: 21 year: 2022 ident: 30774_CR75 publication-title: Water doi: 10.3390/w14213390 – volume-title: Genetic algorithms in search, optimization, and machine learning year: 1989 ident: 30774_CR49 – volume: 122 start-page: 107218 year: 2021 ident: 30774_CR99 publication-title: Ecol Indic doi: 10.1016/j.ecolind.2020.107218 – volume: 201 start-page: 106062 year: 2020 ident: 30774_CR95 publication-title: Knowl-Based Syst doi: 10.1016/j.knosys.2020.106062 – volume: 344 start-page: 118368 year: 2023 ident: 30774_CR104 publication-title: J Environ Manag doi: 10.1016/j.jenvman.2023.118368 – volume: 29 start-page: 39545 issue: 26 year: 2022 ident: 30774_CR64 publication-title: Environ Sci Pollut Res doi: 10.1007/s11356-022-18914-8 – volume: 11 start-page: 712 issue: 6 year: 2007 ident: 30774_CR118 publication-title: IEEE Trans Evol Comput doi: 10.1109/TEVC.2007.892759 – volume: 26 start-page: 19879 year: 2019 ident: 30774_CR63 publication-title: Environ Sci Pollut Res doi: 10.1007/s11356-019-05116-y – volume: 192 start-page: 808 issue: 12 year: 2020 ident: 30774_CR80 publication-title: Environ Monit Assess doi: 10.1007/s10661-020-08631-5 – volume: 30 start-page: 11516 issue: 5 year: 2023 ident: 30774_CR76 publication-title: Environ Sci Pollut Res doi: 10.1007/s11356-022-22719-0 – ident: 30774_CR93 doi: 10.1007/978-3-540-73190-0_2 – volume: 11 start-page: 514 year: 2016 ident: 30774_CR56 publication-title: Curr Hematol Malignancy Reports doi: 10.1007/s11899-016-0355-9 – start-page: 25 volume-title: Sustainability challenges and delivering practical engineering solutions: resources, materials, energy, and buildings year: 2023 ident: 30774_CR85 doi: 10.1007/978-3-031-26580-8_5 – volume: 577 start-page: 123903 year: 2019 ident: 30774_CR10 publication-title: J Hydrol doi: 10.1016/j.jhydrol.2019.06.075 – volume: 31 start-page: 2705 year: 2017 ident: 30774_CR8 publication-title: Stoch Env Res Risk A doi: 10.1007/s00477-016-1338-z – ident: 30774_CR4 doi: 10.1080/02626667.2023.2180375 – ident: 30774_CR62 doi: 10.1007/s11356-021-17084-3 – volume: 34 start-page: 415 issue: 2 year: 2020 ident: 30774_CR7 publication-title: Stoch Env Res Risk A doi: 10.1007/s00477-020-01776-2 – ident: 30774_CR67 doi: 10.3389/fenvs.2022.880246 – volume: 29 start-page: 46018 issue: 30 year: 2022 ident: 30774_CR13 publication-title: Environ Sci Pollut Res doi: 10.1007/s11356-022-19014-3 – volume-title: Deep learning year: 2016 ident: 30774_CR50 – volume: 64 start-page: 1223 issue: 10 year: 2019 ident: 30774_CR57 publication-title: Hydrol Sci J doi: 10.1080/02626667.2019.1628347 – volume: 7 start-page: 34004 year: 2019 ident: 30774_CR96 publication-title: IEEE access doi: 10.1109/ACCESS.2019.2903015 – ident: 30774_CR2 – volume: 186 start-page: 1203 year: 2014 ident: 30774_CR19 publication-title: Environ Monit Assess doi: 10.1007/s10661-013-3450-6 – ident: 30774_CR45 doi: 10.11591/ijai.v9.i1.pp126-134 – volume: 32 start-page: 799 year: 2018 ident: 30774_CR9 publication-title: Stoch Env Res Risk A doi: 10.1007/s00477-017-1394-z – ident: 30774_CR40 doi: 10.1016/B978-0-323-85597-6.00020-3 – ident: 30774_CR46 doi: 10.1128/msystems.01111-21 – ident: 30774_CR17 doi: 10.1145/3287560.3287595 – ident: 30774_CR26 doi: 10.23919/ICACT.2019.8702027 – volume: 868 start-page: 161614 year: 2023 ident: 30774_CR102 publication-title: Sci Total Environ doi: 10.1016/j.scitotenv.2023.161614 – volume: 15 start-page: 362 issue: 4 year: 2022 ident: 30774_CR114 publication-title: Arab J Geosci doi: 10.1007/s12517-022-09546-w – volume: 146 start-page: 109882 year: 2023 ident: 30774_CR23 publication-title: Ecol Indic doi: 10.1016/j.ecolind.2023.109882 – volume: 879 start-page: 162998 year: 2023 ident: 30774_CR47 publication-title: Sci Total Environ doi: 10.1016/j.scitotenv.2023.162998 – ident: 30774_CR5 doi: 10.48550/arXiv.1803.01271 – volume: 9 start-page: 1735 issue: 8 year: 1997 ident: 30774_CR89 publication-title: Neural Comput doi: 10.1162/neco.1997.9.8.1735 – volume: 240 start-page: 106303 year: 2020 ident: 30774_CR21 publication-title: Agric Water Manag doi: 10.1016/j.agwat.2020.106303 – volume: 186 start-page: 4553 issue: 7 year: 2014 ident: 30774_CR98 publication-title: Environ Monit Assess doi: 10.1007/s10661-014-3719-4 – volume: 121 start-page: 103364 year: 2023 ident: 30774_CR109 publication-title: Int J Appl Earth Obs Geoinf doi: 10.1016/j.jag.2023.103364 – volume: 9 start-page: 524 issue: 7 year: 2017 ident: 30774_CR65 publication-title: Water doi: 10.3390/w9070524 – volume: 40 start-page: 147 issue: 3 year: 1993 ident: 30774_CR29 publication-title: IEEE Trans Circuits Syst I: Fundamental Theory Appl doi: 10.1109/81.222795 – volume: 11 start-page: 2058 issue: 7 year: 2019 ident: 30774_CR68 publication-title: Sustainability doi: 10.3390/su11072058 – volume: 6 start-page: 182 issue: 2 year: 2002 ident: 30774_CR35 publication-title: IEEE Trans Evol Comput doi: 10.1109/4235.996017 – volume-title: Deep learning with Python year: 2021 ident: 30774_CR27 – volume: 12 start-page: 1822 issue: 6 year: 2020 ident: 30774_CR91 publication-title: Water doi: 10.3390/w12061822 – ident: 30774_CR74 doi: 10.1007/978-3-319-93025-1_4 – volume: 321 start-page: 115923 year: 2022 ident: 30774_CR100 publication-title: J Environ Manag doi: 10.1016/j.jenvman.2022.115923 – ident: 30774_CR86 doi: 10.1016/B978-0-12-813314-9.00002-5 – volume: 145 start-page: 04019032 issue: 6 year: 2019 ident: 30774_CR92 publication-title: J Environ Eng doi: 10.1061/(ASCE)EE.1943-7870.0001528 – volume: 58 start-page: 4604 issue: 7 year: 2020 ident: 30774_CR111 publication-title: IEEE Trans Geosci Remote Sens doi: 10.1109/TGRS.2020.2964627 – volume: 234 start-page: 121076 year: 2023 ident: 30774_CR122 publication-title: Expert Syst Appl doi: 10.1016/j.eswa.2023.121076 – volume: 2 start-page: 1 year: 2016 ident: 30774_CR6 publication-title: Model Earth Syst Environ doi: 10.1007/s40808-015-0072-8 – volume: 171 start-page: 115454 year: 2020 ident: 30774_CR22 publication-title: Water Res doi: 10.1016/j.watres.2019.115454 – volume: 385 start-page: 135671 year: 2023 ident: 30774_CR103 publication-title: J Clean Prod doi: 10.1016/j.jclepro.2022.135671 – ident: 30774_CR14 doi: 10.1007/978-3-030-23335-8_15 – volume: 27 start-page: 2771 year: 2013 ident: 30774_CR77 publication-title: Water Resour Manag doi: 10.1007/s11269-013-0314-3 – volume: 15 start-page: 2532 issue: 14 year: 2023 ident: 30774_CR3 publication-title: Water doi: 10.3390/w15142532 – volume: 14 start-page: 610 issue: 4 year: 2022 ident: 30774_CR110 publication-title: Water doi: 10.3390/w14040610 – volume: 341 start-page: 118006 year: 2023 ident: 30774_CR116 publication-title: J Environ Manag doi: 10.1016/j.jenvman.2023.118006 – volume: 840 start-page: 156613 year: 2022 ident: 30774_CR107 publication-title: Sci Total Environ doi: 10.1016/j.scitotenv.2022.156613 – ident: 30774_CR58 doi: 10.1007/s11269-023-03428-w – ident: 30774_CR16 doi: 10.1016/j.jhydrol.2008.08.026 – ident: 30774_CR12 doi: 10.1016/j.jhydrol.2021.126196 – volume: 721 start-page: 137612 year: 2020 ident: 30774_CR15 publication-title: Sci Total Environ doi: 10.1016/j.scitotenv.2020.137612 – volume: 146 start-page: 109882 year: 2023 ident: 30774_CR24 publication-title: Ecol Indic doi: 10.1016/j.ecolind.2023.109882 – ident: 30774_CR113 doi: 10.1016/j.envpol.2022.119611 – volume: 86 start-page: 105837 year: 2020 ident: 30774_CR84 publication-title: Appl Soft Comput doi: 10.1016/j.asoc.2019.105837 – volume: 29 start-page: 48491 issue: 32 year: 2022 ident: 30774_CR88 publication-title: Environ Sci Pollut Res doi: 10.1007/s11356-022-18644-x – volume: 72 start-page: 4 issue: 1 year: 2018 ident: 30774_CR70 publication-title: Statistica Neerlandica doi: 10.1111/stan.12111 – ident: 30774_CR37 doi: 10.1080/10298436.2022.2057975 – volume: 5 start-page: 132 issue: 2 year: 2022 ident: 30774_CR18 publication-title: One Earth doi: 10.1016/j.oneear.2022.01.008 – volume: 433 start-page: 307 year: 2014 ident: 30774_CR71 publication-title: Aquaculture doi: 10.1016/j.aquaculture.2014.06.029 – volume: 26 start-page: 1001 issue: 4 year: 2022 ident: 30774_CR112 publication-title: Hydrol Earth Syst Sci doi: 10.5194/hess-26-1001-2022 – volume: 581 start-page: 124432 year: 2020 ident: 30774_CR66 publication-title: J Hydrol doi: 10.1016/j.jhydrol.2019.124432 – volume: 66 start-page: 1457 issue: 9 year: 2021 ident: 30774_CR61 publication-title: Hydrol Sci J doi: 10.1080/02626667.2021.1928673 – volume-title: Ensemble methods: foundations and algorithms year: 2012 ident: 30774_CR120 doi: 10.1201/b12207 – volume: 3 start-page: 652100 year: 2021 ident: 30774_CR87 publication-title: Front Water doi: 10.3389/frwa.2021.652100 – volume: 7 start-page: 105 issue: 1 year: 2023 ident: 30774_CR78 publication-title: Eigenpub Rev Sci Technol – volume: 80 start-page: 8091 year: 2021 ident: 30774_CR60 publication-title: Multimed Tools Appl doi: 10.1007/s11042-020-10139-6 – volume: 85 start-page: 11 year: 2018 ident: 30774_CR53 publication-title: Ecol Indic doi: 10.1016/j.ecolind.2017.09.056 – volume: 219 start-page: 118532 year: 2022 ident: 30774_CR101 publication-title: Water Res doi: 10.1016/j.watres.2022.118532 – volume: 55 start-page: 106 issue: 1 year: 2020 ident: 30774_CR124 publication-title: Water Qual Res J doi: 10.2166/wqrj.2019.053 – volume: 8 start-page: 188068 year: 2020 ident: 30774_CR83 publication-title: IEEE Access doi: 10.1109/ACCESS.2020.3030878 – ident: 30774_CR117 doi: 10.1016/j.jclepro.2023.137931 – ident: 30774_CR20 doi: 10.1109/ITNEC48623.2020.9084730 – volume: 44 start-page: 101228 year: 2022 ident: 30774_CR73 publication-title: J Hydrol Region Stud doi: 10.1016/j.ejrh.2022.101228 – volume: 30 start-page: 883 year: 2016 ident: 30774_CR11 publication-title: Stoch Env Res Risk A doi: 10.1007/s00477-015-1088-3 – ident: 30774_CR48 – volume: 28 start-page: 2222 issue: 10 year: 2016 ident: 30774_CR52 publication-title: IEEE Trans Neural Netw Learn Syst doi: 10.1109/TNNLS.2016.2582924 – ident: 30774_CR43 doi: 10.3390/w13202907 – ident: 30774_CR30 – volume: 26 start-page: 30524 year: 2019 ident: 30774_CR69 publication-title: Environ Sci Pollut Res doi: 10.1007/s11356-019-06360-y – volume: 46 start-page: 17273 issue: 12 year: 2022 ident: 30774_CR97 publication-title: Int J Energy Res doi: 10.1002/er.8392 – volume: 651 start-page: 2985 year: 2019 ident: 30774_CR106 publication-title: Sci Total Environ doi: 10.1016/j.scitotenv.2018.09.320 – volume: 416 start-page: 137885 year: 2023 ident: 30774_CR115 publication-title: J Clean Prod doi: 10.1016/j.jclepro.2023.137885 – volume: 317 start-page: 125958 year: 2022 ident: 30774_CR54 publication-title: Constr Build Mater doi: 10.1016/j.conbuildmat.2021.125958 – volume: 11 start-page: 118 issue: 1 year: 2022 ident: 30774_CR79 publication-title: Environ Technol Rev doi: 10.1080/21622515.2022.2118084 – ident: 30774_CR1 doi: 10.1016/j.uclim.2022.101237 – volume: 254 start-page: 124376 year: 2022 ident: 30774_CR31 publication-title: Energy doi: 10.1016/j.energy.2022.124376 – volume: 54 start-page: 8558 issue: 11 year: 2018 ident: 30774_CR90 publication-title: Water Resour Res doi: 10.1029/2018WR022643 – ident: 30774_CR51 doi: 10.1007/978-3-642-24797-2 – ident: 30774_CR94 doi: 10.1016/j.jenvman.2023.118436 – volume: 216 start-page: 208 year: 2016 ident: 30774_CR121 publication-title: Neurocomputing doi: 10.1016/j.neucom.2016.07.036 – ident: 30774_CR36 doi: 10.1007/s40808-021-01253-x – volume: 85 start-page: 6 issue: 1 year: 1997 ident: 30774_CR55 publication-title: Proc IEEE doi: 10.1109/5.554205 – ident: 30774_CR41 doi: 10.1007/s40515-022-00244-4 – ident: 30774_CR25 doi: 10.48550/arXiv.1406.1078 – ident: 30774_CR44 doi: 10.1016/j.eswa.2020.113660 – ident: 30774_CR32 doi: 10.1038/s41598-023-39156-9 – volume: 821 start-page: 153311 year: 2022 ident: 30774_CR81 publication-title: Sci Total Environ doi: 10.1016/j.scitotenv.2022.153311 – ident: 30774_CR34 doi: 10.1007/3-540-45356-3_83 – volume: 577 start-page: 123962 year: 2019 ident: 30774_CR39 publication-title: J Hydrol doi: 10.1016/j.jhydrol.2019.123962 – volume: 186 start-page: 116349 year: 2020 ident: 30774_CR82 publication-title: Water Res doi: 10.1016/j.watres.2020.116349 – volume: 19 start-page: 439 issue: 7 year: 2020 ident: 30774_CR38 publication-title: J Saudi Soc Agric Sci doi: 10.1016/j.jssas.2020.08.001 – volume: 132 start-page: 104792 year: 2020 ident: 30774_CR59 publication-title: Environ Model Softw doi: 10.1016/j.envsoft.2020.104792 – volume: 648 start-page: 839 year: 2019 ident: 30774_CR42 publication-title: Sci Total Environ doi: 10.1016/j.scitotenv.2018.08.221 – volume: 55 start-page: 565 issue: 1 year: 2022 ident: 30774_CR108 publication-title: Artif Intell Rev doi: 10.1007/s10462-021-10038-8  | 
    
| SSID | ssj0020927 | 
    
| Score | 2.4823608 | 
    
| Snippet | Water quality variables, including chlorophyll-a (Chl-a), play a pivotal role in comprehending and evaluating the condition of aquatic ecosystems. Chl-a, a... | 
    
| SourceID | proquest pubmed crossref springer  | 
    
| SourceType | Aggregation Database Index Database Enrichment Source Publisher  | 
    
| StartPage | 124316 | 
    
| SubjectTerms | Algae Algorithms Aquatic ecosystems Aquatic organisms Aquatic Pollution Atmospheric Protection/Air Quality Control/Air Pollution Chlorophyll Cyanobacteria data collection Deep learning Earth and Environmental Science Ecotoxicology Environment Environmental Chemistry Environmental Health Forecasting Genetic algorithms Greece lakes Long short-term memory Machine learning Mathematical models Multiple objective analysis Neural networks Recurrent neural networks Research Article Sorting algorithms Waste Water Technology Water Management Water Pollution Control Water quality  | 
    
| SummonAdditionalLinks | – databaseName: SpringerLink Journals (ICM) dbid: U2A link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LSwMxEA5aL17EV7W-iOBNF7LZZJMci7QUQU8WepEluzvbi25Lt7X4753so0VqBc-ZLGEyk_lm50XIHVimAfzUQ2OtPZGp0NM2Ux7XEhBPpGgCXaHw80s4GIqnkRzVRWFFk-3ehCTLl3pd7OYH0iXMBu5_iRKe2CV70rXzQike8u7KzWKGq7o85vd9P03QBq7ciImWpqZ_SA5qjEi71aUekR3Ij0m7ty5Jw8VaJ4sT8uamaya2cPnLdInQcUarSskv-omOsCuNoi67fUxTgCmtx0SMqc1Tuix_jEJKLUp0Oa-IolsLH25POSOnOCXDfu_1ceDVQxO8RDA991ScZCCDEJSUmgnwA_SI4pBbG8SouzYBNFomFjxNIGRZaNFlESq2iVQszDgL2qSVT3I4JzSTLmZowcRGiDg1FqGeMmAMzxSzvt8hfsPHKKk7irvBFu_Ruhey432EvI9K3keiQ-5Xe6ZVP40_qa-a64lq3SoibvDV4eha8w65XS2jVrhQh81hskAahGEaDbRm22kCfOylRLiL3zmrrn51pEAZ12lRd8hDIwvrA2w_78X_yC_JvpteX2XHXJHWfLaAa8Q48_imFOlvgoXzDg priority: 102 providerName: Springer Nature  | 
    
| Title | Forecasting water quality variable using deep learning and weighted averaging ensemble models | 
    
| URI | https://link.springer.com/article/10.1007/s11356-023-30774-4 https://www.ncbi.nlm.nih.gov/pubmed/37996598 https://www.proquest.com/docview/2904823382 https://www.proquest.com/docview/2893834180 https://www.proquest.com/docview/3153555332  | 
    
| Volume | 30 | 
    
| hasFullText | 1 | 
    
| inHoldings | 1 | 
    
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVLSH databaseName: SpringerLink Journals customDbUrl: mediaType: online eissn: 1614-7499 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0020927 issn: 1614-7499 databaseCode: AFBBN dateStart: 19970301 isFulltext: true providerName: Library Specific Holdings – providerCode: PRVPQU databaseName: Proquest Public Health Database customDbUrl: eissn: 1614-7499 dateEnd: 20241102 omitProxy: true ssIdentifier: ssj0020927 issn: 1614-7499 databaseCode: 8C1 dateStart: 20190101 isFulltext: true titleUrlDefault: https://search.proquest.com/publichealth providerName: ProQuest – providerCode: PRVAVX databaseName: SpringerLINK - Czech Republic Consortium customDbUrl: eissn: 1614-7499 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0020927 issn: 1614-7499 databaseCode: AGYKE dateStart: 19970101 isFulltext: true titleUrlDefault: http://link.springer.com providerName: Springer Nature – providerCode: PRVAVX databaseName: SpringerLink Journals (ICM) customDbUrl: eissn: 1614-7499 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0020927 issn: 1614-7499 databaseCode: U2A dateStart: 19970101 isFulltext: true titleUrlDefault: http://www.springerlink.com/journals/ providerName: Springer Nature  | 
    
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3db9MwED9t7QsviK9BYVSexBtYJI4d2w9oKlO3CUSFEJXKA4qc5LIXSMvaMfHf7y4frdC0veQhsSPrfOe78338AN5giBxiXEpS1k7qyqbShcpK5QySPVGSCuRC4S-z9HyuPy3MYg9mfS0Mp1X2Z2JzUJfLgu_I3ytPvKbIoVLHqz-SUaM4utpDaIQOWqH80LQY24eh4s5YAxh-nM6-ftu6YJFvQVy91jJOtO7KaNpiujgxnJCb8H2M1VL_r6pu2Z-3YqeNSjp9BA87W1JM2s1_DHtYP4GD6a50jT52srt-Cj8ZhbMIa85zFtdkYl6KtqLyn_hLDjOXUAnOgr8QJeJKdHASFyLUpbhuLlCxFIE4v8E1EuT-4m-e02DprJ_B_HT6_eRcduAKstCR20ibFxWaJEVrjIs0xgl5TnmqQkhykvFQICk3n2tVFphGVRrItdE2D4WxUVqpKDmAQb2s8QWIynBsMaDPiax56QOZhNaj96qyUYjjEcQ9HbOi6zzOABi_sl3PZKZ9RrTPGtpnegRvt3NWbd-Ne0cf9tuTdTK4znYcM4Kj7WeSHg6JhBqXVzSGzDVHitxFd49JSCkYQ2Yx_ed5u_XbJSXWc0dGN4J3PS_sFnD3el_ev95X8IBR7dusmUMYbC6v8DXZPpt8DPt2YenpTuIxDCdnPz5Pxx2T09u5mtwAhycCvw | 
    
| linkProvider | ProQuest | 
    
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LbxQxDLZKOcAF8SpdKBAkOEHETB6T5IAQKq229HFqpV7QkJnx9AKzS3fLqn-K34g9j12hqr31nIcix7E_J3Y-gLcYE4-YVpKctZemdpn0sXZSeYuEJypygVwofHiUjU_Mt1N7ugZ_h1oYTqscbGJrqKtJyXfkH1UgXVMUUKnP09-SWaP4dXWg0OjUYh8vFxSyzT7tfaX9fafU7s7x9lj2rAKyNImfS1eUNVqdobPWJwZTTSFDkakYdUHKHUskqx4Ko6oSs6TOImF644pYWpdktUo0zXsH7hqtHBsCv71MKVFJ6ChigzEy1cb0RTpdqV6qLaf7ar7tcUaa_x3hFXR75WW2dXi7D-FBj1TFl061HsEaNo9hY2dVGEeNvWWYPYHvzPFZxhlnUYsFAdhz0dVrXoo_FI5zgZbgHPszUSFORU9WcSZiU4lFez2LlYh0rlrWJEHBNf7iMS1Tz-wpnNyKkDdgvZk0uAmitvxyGTEUJNaiCpEApwsYgqpdEtN0BOkgx7zs_zVneo2f-epHZpZ9TrLPW9nnZgTvl2Om3a8eN_beGrYn70_4LF_p4wjeLJvpbPKDS2xwckF9CAx6ggk-ub6PJpdjLYFumudZt_XLJWkX-L9HP4IPgy6sFnD9ep_fvN7XcG98fHiQH-wd7b-A-4p1ss3P2YL1-fkFviSUNS9etaot4Mdtn6V_t-0z8w | 
    
| linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VIiEuiFdhoYCR4ARWEz_i-IAQol21FCoOVNoLCk4y6QWyS7Nl1b_Gr2Mmj41Q1d569kPWeMbzjT3jD-AVhihFjEtJzjqVpnKJTEPlpEotEp4oyQVyofCXo2T_2Hya2dkG_B1qYTitcjgT24O6nBd8R76jPOmaooBK7VR9WsTX3en7xW_JDFL80jrQaXQqcojnKwrfmncHu7TXr5Wa7n37uC97hgFZmChdSpcXFVqdoLM2jQzGmsKHPFEh6JwUPRRIJ7zPjSoLTKIqCYTvjctDYV2UVCrSNO8NuOm09pxO6GZjsBf5ji7WGyNjbUxfsNOV7cXacuqv5psfZ6T53yleQLoXXmlb5ze9C3d61Co-dGp2Dzawvg9be2ORHDX2p0TzAL4z32cRGs6oFisCs6eiq908F38oNOdiLcH59ieiRFyInrjiRIS6FKv2qhZLEcjGWgYlQYE2_uIxLWtP8xCOr0XIW7BZz2t8DKKy_IoZ0Ock1rz0gcCn8-i9qlwU4ngC8SDHrOj_OGeqjZ_Z-Dszyz4j2Wet7DMzgTfrMYvuh48re28P25P11t5ko25O4OW6meyUH19CjfMz6kPAMCXIkEaX99HkfqwlAE7zPOq2fr0k7Tz__ZhO4O2gC-MCLl_vk6vX-wJukRVlnw-ODp_CbcUq2abqbMPm8vQMnxHgWubPW80W8OO6Tekfsfw4Yg | 
    
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Forecasting+water+quality+variable+using+deep+learning+and+weighted+averaging+ensemble+models&rft.jtitle=Environmental+science+and+pollution+research+international&rft.au=Zamani%2C+Mohammad+G&rft.au=Nikoo%2C+Mohammad+Reza&rft.au=Jahanshahi%2C+Sina&rft.au=Barzegar%2C+Rahim&rft.date=2023-12-01&rft.pub=Springer+Nature+B.V&rft.issn=0944-1344&rft.eissn=1614-7499&rft.volume=30&rft.issue=59&rft.spage=124316&rft.epage=124340&rft_id=info:doi/10.1007%2Fs11356-023-30774-4&rft.externalDBID=HAS_PDF_LINK | 
    
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1614-7499&client=summon | 
    
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1614-7499&client=summon | 
    
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1614-7499&client=summon |