Forecasting water quality variable using deep learning and weighted averaging ensemble models
Water quality variables, including chlorophyll-a (Chl-a), play a pivotal role in comprehending and evaluating the condition of aquatic ecosystems. Chl-a, a pigment present in diverse aquatic organisms, notably algae and cyanobacteria, serves as a valuable indicator of water quality. Thus, the object...
Saved in:
| Published in | Environmental science and pollution research international Vol. 30; no. 59; pp. 124316 - 124340 |
|---|---|
| Main Authors | , , , , |
| Format | Journal Article |
| Language | English |
| Published |
Berlin/Heidelberg
Springer Berlin Heidelberg
01.12.2023
Springer Nature B.V |
| Subjects | |
| Online Access | Get full text |
| ISSN | 1614-7499 0944-1344 1614-7499 |
| DOI | 10.1007/s11356-023-30774-4 |
Cover
| Summary: | Water quality variables, including chlorophyll-a (Chl-a), play a pivotal role in comprehending and evaluating the condition of aquatic ecosystems. Chl-a, a pigment present in diverse aquatic organisms, notably algae and cyanobacteria, serves as a valuable indicator of water quality. Thus, the objectives of this study encompass: (1) the assessment of the predictive capabilities of four deep learning (DL) models — namely, recurrent neural network (RNN), long short-term memory (LSTM), gated recurrence unit (GRU), and temporal convolutional network (TCN) — in forecasting Chl-a concentrations; (2) the incorporation of these DL models into ensemble models (EMs) employing genetic algorithm (GA) and non-dominated sorting genetic algorithm (NSGA-II) to harness the strengths of each standalone model; and (3) the evaluation of the efficacy of the developed EMs. Utilizing data collected at 15-min intervals from Small Prespa Lake (SPL) in Greece, the models employed hourly Chl-a concentration lag times, extending up to 6 h, as models’ inputs to forecast Chla (t+1). The proposed models underwent training on 70% of the dataset and were subsequently validated on the remaining 30%. Among the standalone DL models, the GRU model exhibited superior performance in Chl-a forecasting, surpassing the RNN, LSTM, and TCN models by 8%, 2%, and 2%, respectively. Furthermore, the integration of DL models through single-objective GA and multi-objective NSGA-II optimization algorithms yielded hybrid models adept at effectively forecasting both low and high Chl-a concentrations. The ensemble model based on NSGA-II outperformed standalone DL models as well as the GA-based model across a range of evaluation indices. For instance, considering the
R
-squared metric, the study’s findings demonstrated that the EM-NSGA-II stands out with exceptional effectiveness compared to DL and EM-GA models, showcasing improvements of 14% (RNN), 8% (LSTM), 6% (GRU), 8% (TCN), and 3% (EM-GA) during the testing phase. |
|---|---|
| Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
| ISSN: | 1614-7499 0944-1344 1614-7499 |
| DOI: | 10.1007/s11356-023-30774-4 |