Multilevel Color Image Segmentation Based on GLCM and Improved Salp Swarm Algorithm

The grayscale co-occurrence matrix (GLCM) can be adapted to segment the image according to the pixels, but the segmentation effect becomes worse as the number of threshold increases. To solve this problem, we propose an improved salp swarm algorithm (LSSA) to optimize GLCM, with the novel diagonal c...

Full description

Saved in:
Bibliographic Details
Published inIEEE access Vol. 7; pp. 37672 - 37690
Main Authors Xing, Zhikai, Jia, Heming
Format Journal Article
LanguageEnglish
Published Piscataway IEEE 2019
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text
ISSN2169-3536
2169-3536
DOI10.1109/ACCESS.2019.2904511

Cover

More Information
Summary:The grayscale co-occurrence matrix (GLCM) can be adapted to segment the image according to the pixels, but the segmentation effect becomes worse as the number of threshold increases. To solve this problem, we propose an improved salp swarm algorithm (LSSA) to optimize GLCM, with the novel diagonal class entropy (DCE) as the fitness function of the GLCM algorithm. At the same time, in order to increase the optimization ability of traditional SSA algorithm, Levy flight (LF) strategy should be improved. Through experiments on the LSSA algorithm of the color natural images, the satellite images, and the Berkeley images, the segmentation quality of the segmented images is evaluated by peak signal-to-noise ratio, feature similarity, probability rand index, variation of information, global consistency error, and boundary displacement error. The experimental results show that the segmentation ability of the GLCM-LSSA algorithm is superior to other comparison algorithms and has a good segmentation ability.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:2169-3536
2169-3536
DOI:10.1109/ACCESS.2019.2904511