eWB: Event-Based Weight Binarization Algorithm for Spiking Neural Networks

Learning binary weights to minimize the difference between target and actual outputs can be considered as a parameter optimization task within the given constraints, and thus, it belongs to the application domain of the Lagrange multiplier method (LMM). Based on the LMM, we propose a novel event-bas...

Full description

Saved in:
Bibliographic Details
Published inIEEE access Vol. 9; pp. 38097 - 38106
Main Authors Kim, Dohun, Kim, Guhyun, Hwang, Cheol Seong, Jeong, Doo Seok
Format Journal Article
LanguageEnglish
Published Piscataway IEEE 2021
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text
ISSN2169-3536
2169-3536
DOI10.1109/ACCESS.2021.3062405

Cover

Abstract Learning binary weights to minimize the difference between target and actual outputs can be considered as a parameter optimization task within the given constraints, and thus, it belongs to the application domain of the Lagrange multiplier method (LMM). Based on the LMM, we propose a novel event-based weight binarization (eWB) algorithm for spiking neural networks (SNNs) with binary synaptic weights (−1, 1). The algorithm features (i) event-based asymptotic weight binarization using local data only, (ii) full compatibility with event-based end-to-end learning algorithms (e.g., event-driven random backpropagation (eRBP) algorithm), and (iii) the capability to address various constraints (including the binary weight constraint). As a proof of concept, we combine eWB with eRBP (eWB-eRBP) to obtain a single algorithm for learning binary weights to generate correct classifications. Fully connected SNNs were trained using eWB-eRBP and achieved an accuracy of 95.35% on MNIST. To the best of our knowledge, this is the first report on completely binary SNNs trained using an event-based learning algorithm. Given that eRBP with full-precision (32-bit) weights exhibited 97.20% accuracy, the binarization comes at the cost of an accuracy reduction of approximately 1.85%. The python code is available online: https://github.com/galactico7/eWB .
AbstractList Learning binary weights to minimize the difference between target and actual outputs can be considered as a parameter optimization task within the given constraints, and thus, it belongs to the application domain of the Lagrange multiplier method (LMM). Based on the LMM, we propose a novel event-based weight binarization (eWB) algorithm for spiking neural networks (SNNs) with binary synaptic weights (−1, 1). The algorithm features (i) event-based asymptotic weight binarization using local data only, (ii) full compatibility with event-based end-to-end learning algorithms (e.g., event-driven random backpropagation (eRBP) algorithm), and (iii) the capability to address various constraints (including the binary weight constraint). As a proof of concept, we combine eWB with eRBP (eWB-eRBP) to obtain a single algorithm for learning binary weights to generate correct classifications. Fully connected SNNs were trained using eWB-eRBP and achieved an accuracy of 95.35% on MNIST. To the best of our knowledge, this is the first report on completely binary SNNs trained using an event-based learning algorithm. Given that eRBP with full-precision (32-bit) weights exhibited 97.20% accuracy, the binarization comes at the cost of an accuracy reduction of approximately 1.85%. The python code is available online: https://github.com/galactico7/eWB .
Author Jeong, Doo Seok
Kim, Guhyun
Hwang, Cheol Seong
Kim, Dohun
Author_xml – sequence: 1
  givenname: Dohun
  surname: Kim
  fullname: Kim, Dohun
  organization: Department of Material Science and Engineering, Seoul National University, Seoul, Republic of Korea
– sequence: 2
  givenname: Guhyun
  surname: Kim
  fullname: Kim, Guhyun
  organization: Division of Materials Science and Engineering, Hanyang University, Seoul, Republic of Korea
– sequence: 3
  givenname: Cheol Seong
  orcidid: 0000-0002-6254-9758
  surname: Hwang
  fullname: Hwang, Cheol Seong
  organization: Department of Material Science and Engineering, Seoul National University, Seoul, Republic of Korea
– sequence: 4
  givenname: Doo Seok
  orcidid: 0000-0001-7954-2213
  surname: Jeong
  fullname: Jeong, Doo Seok
  email: dooseokj@hanyang.ac.kr
  organization: Division of Materials Science and Engineering, Hanyang University, Seoul, Republic of Korea
BookMark eNptkU1PGzEQhq2KSlDgF3BZqedN_bm2e0uitKVCcEgRR8vxjoPDsk5tp4j--i4siqoIX8YazfPOzDuf0FEfe0DoguAJIVh_mc7ni-VyQjElE4YbyrH4gE4oaXTNBGuO_vsfo_OcN3h4akgJeYJ-wt3sa7X4A32pZzZDW91BWN-XahZ6m8JfW0Lsq2m3jimU-8fKx1Qtt-Eh9OvqGnbJdkMoTzE95DP00dsuw_lbPEW33xa_5j_qq5vvl_PpVe04VqXmakVhJTxQKSmRjGrtNJZWKtI6q8EL4inDnIJiykqpvPCcNWBXbYuZaNkpuhx122g3ZpvCo03PJtpgXhMxrY1NJbgOTKvwymnvudCCO-CWOCxFQwhg3CihBi0-au36rX1-sl23FyTYvNhrrHOQs3mx17zZO2CfR2yb4u8d5GI2cZf6YWtDBSaMUqXkUKXHKpdizgm8caG8GlqSDd2-w3jAww7sgD2c633qYqQCAOwJzRqmNGf_AN1_pWA
CODEN IAECCG
CitedBy_id crossref_primary_10_1109_TGCN_2023_3337748
crossref_primary_10_1109_JETCAS_2023_3328911
Cites_doi 10.1162/neco.2009.11-08-901
10.3389/fnins.2018.00665
10.1063/1.5042243
10.3389/fnins.2016.00241
10.1109/ACCESS.2020.3001296
10.3389/fnins.2019.00095
10.3389/fnins.2018.00774
10.3389/fnins.2015.00222
10.1038/nn1643
10.1017/CBO9780511815706
10.3389/fnins.2013.00272
10.1007/978-3-319-46493-0_32
10.1523/JNEUROSCI.18-24-10464.1998
10.1038/s41586-019-1677-2
10.1109/MM.2018.112130359
10.3389/fnins.2017.00324
10.1016/S0925-2312(01)00658-0
10.1109/TED.2013.2263000
10.1145/3320288.3320304
10.3389/fnins.2019.00189
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021
DBID 97E
ESBDL
RIA
RIE
AAYXX
CITATION
7SC
7SP
7SR
8BQ
8FD
JG9
JQ2
L7M
L~C
L~D
ADTOC
UNPAY
DOA
DOI 10.1109/ACCESS.2021.3062405
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE Xplore Open Access Journals
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE/IET Electronic Library
CrossRef
Computer and Information Systems Abstracts
Electronics & Communications Abstracts
Engineered Materials Abstracts
METADEX
Technology Research Database
Materials Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Unpaywall for CDI: Periodical Content
Unpaywall
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
Materials Research Database
Engineered Materials Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Advanced Technologies Database with Aerospace
METADEX
Computer and Information Systems Abstracts Professional
DatabaseTitleList Materials Research Database


Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
– sequence: 3
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 2169-3536
EndPage 38106
ExternalDocumentID oai_doaj_org_article_d80bc9ff45954ce4a1c075611e006858
10.1109/access.2021.3062405
10_1109_ACCESS_2021_3062405
9363894
Genre orig-research
GrantInformation_xml – fundername: Ministry of Trade, Industry & Energy and Korea Semiconductor Research Consortium
  funderid: 10.13039/501100003052
– fundername: National Research Foundation of Korea
  grantid: NRF-2019R1C1C1009810
  funderid: 10.13039/501100003725
– fundername: Future Semiconductor Device Technology Development Program
  grantid: 20012002
  funderid: 10.13039/501100003662
GroupedDBID 0R~
4.4
5VS
6IK
97E
AAJGR
ABAZT
ABVLG
ACGFS
ADBBV
AGSQL
ALMA_UNASSIGNED_HOLDINGS
BCNDV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
EBS
EJD
ESBDL
GROUPED_DOAJ
IPLJI
JAVBF
KQ8
M43
M~E
O9-
OCL
OK1
RIA
RIE
RNS
AAYXX
CITATION
7SC
7SP
7SR
8BQ
8FD
JG9
JQ2
L7M
L~C
L~D
ADTOC
UNPAY
ID FETCH-LOGICAL-c408t-48b2eb5fe2772173299c907a781dca9ef51f23042e838a778f5f436eabdd035d3
IEDL.DBID RIE
ISSN 2169-3536
IngestDate Fri Oct 03 12:53:56 EDT 2025
Tue Aug 19 20:01:48 EDT 2025
Sun Jun 29 16:44:50 EDT 2025
Wed Oct 01 04:43:56 EDT 2025
Thu Apr 24 22:56:46 EDT 2025
Wed Aug 27 02:45:36 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Language English
License https://creativecommons.org/licenses/by/4.0/legalcode
cc-by
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c408t-48b2eb5fe2772173299c907a781dca9ef51f23042e838a778f5f436eabdd035d3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-6254-9758
0000-0001-7954-2213
OpenAccessLink https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/document/9363894
PQID 2501322887
PQPubID 4845423
PageCount 10
ParticipantIDs doaj_primary_oai_doaj_org_article_d80bc9ff45954ce4a1c075611e006858
crossref_primary_10_1109_ACCESS_2021_3062405
crossref_citationtrail_10_1109_ACCESS_2021_3062405
proquest_journals_2501322887
ieee_primary_9363894
unpaywall_primary_10_1109_access_2021_3062405
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20210000
2021-00-00
20210101
2021-01-01
PublicationDateYYYYMMDD 2021-01-01
PublicationDate_xml – year: 2021
  text: 20210000
PublicationDecade 2020
PublicationPlace Piscataway
PublicationPlace_xml – name: Piscataway
PublicationTitle IEEE access
PublicationTitleAbbrev Access
PublicationYear 2021
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref13
ref12
ref15
ref14
ref11
ref10
lee (ref5) 2019
ref2
ref1
ref17
ref16
ref19
courbariaux (ref20) 2015
maher (ref24) 1998
lu (ref22) 2020
glorot (ref26) 2010
ref23
courbariaux (ref18) 2016
platt (ref25) 0
ref28
ref27
ref8
horowitz (ref29) 2014
ref7
ref9
ref4
ref3
ref6
hubara (ref21) 2017; 18
References_xml – start-page: 10
  year: 2014
  ident: ref29
  article-title: 1.1 computing's energy problem (and what we can do about it)
  publication-title: IEEE Int Solid-State Circuits Conf (ISSCC) Dig Tech Papers
– ident: ref11
  doi: 10.1162/neco.2009.11-08-901
– ident: ref7
  doi: 10.3389/fnins.2018.00665
– ident: ref2
  doi: 10.1063/1.5042243
– ident: ref16
  doi: 10.3389/fnins.2016.00241
– ident: ref10
  doi: 10.1109/ACCESS.2020.3001296
– ident: ref4
  doi: 10.3389/fnins.2019.00095
– year: 0
  ident: ref25
  article-title: Constrained differential optimization
– ident: ref1
  doi: 10.3389/fnins.2018.00774
– ident: ref23
  doi: 10.3389/fnins.2015.00222
– ident: ref12
  doi: 10.1038/nn1643
– ident: ref17
  doi: 10.1017/CBO9780511815706
– ident: ref15
  doi: 10.3389/fnins.2013.00272
– year: 2016
  ident: ref18
  article-title: Binarized neural networks: Training deep neural networks with weights and activations constrained to +1 or ?1
  publication-title: arXiv 1602 02830 [cs]
– ident: ref19
  doi: 10.1007/978-3-319-46493-0_32
– volume: 18
  start-page: 6869
  year: 2017
  ident: ref21
  article-title: Quantized neural networks: Training neural networks with low precision weights and activations
  publication-title: J Mach Learn Res
– start-page: 249
  year: 2010
  ident: ref26
  article-title: Understanding the difficulty of training deep feedforward neural networks
  publication-title: Proc 13th Int Conf Artif Intell Statist
– ident: ref6
  doi: 10.1523/JNEUROSCI.18-24-10464.1998
– year: 2020
  ident: ref22
  article-title: Exploring the connection between binary and spiking neural networks
  publication-title: arXiv 2002 10064
– ident: ref3
  doi: 10.1038/s41586-019-1677-2
– ident: ref27
  doi: 10.1109/MM.2018.112130359
– ident: ref9
  doi: 10.3389/fnins.2017.00324
– ident: ref13
  doi: 10.1016/S0925-2312(01)00658-0
– year: 1998
  ident: ref24
  publication-title: Principles and Practice of Constraint Programming-CP98 4th International Conference CP98 Pisa Italy Oct 26-30 1998 Proceedings
– start-page: 3123
  year: 2015
  ident: ref20
  article-title: Binaryconnect: Training deep neural networks with binary weights during propagations
  publication-title: Proc Adv Neural Inf Process Syst
– ident: ref14
  doi: 10.1109/TED.2013.2263000
– ident: ref28
  doi: 10.1145/3320288.3320304
– year: 2019
  ident: ref5
  article-title: Enabling spike-based backpropagation in state-of-the-art deep neural network architectures
  publication-title: arXiv 1903 06379
– ident: ref8
  doi: 10.3389/fnins.2019.00189
SSID ssj0000816957
Score 2.2357438
Snippet Learning binary weights to minimize the difference between target and actual outputs can be considered as a parameter optimization task within the given...
SourceID doaj
unpaywall
proquest
crossref
ieee
SourceType Open Website
Open Access Repository
Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 38097
SubjectTerms Accuracy
Algorithms
Approximation algorithms
Back propagation
Back propagation networks
Classification algorithms
Event-based weight binarization
event-driven learning algorithm
Lagrange multiplier
Lagrange multiplier method
Linear programming
Machine learning
Neural networks
Neurons
Optimization
Spiking
spiking neural networks
Synapses
System-on-chip
Training
Weight
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LTxsxELYqLm0PqJQilgLygWO32Gt7bXNLIlDEgQtFcLNsr12QQhJBUNV_z9jrRImQyqXX1aw1OzPr-WY0D4ROqJeBO8dqLzUEKG2ItW0Fq8H3ed5ESkjIBbJX7fiGX96Ju7VVX6kmrB8P3AvutFPEeR0jF1pwH7ilHrxcS2lI3Q0it_kSpdeCqXwHK9pqIcuYIUr06WA0gi-CgLChPwEmgyMTG64oT-wvK1Y20ObHl-nc_v1jJ5M1x3PxBW0XxIgHPac76EOYfkWf1-YI7qLLcDs8w-epdLEeglvq8G3OeOJh6rYtnZZ4MPk9e3pY3D9iAKr4ev6QsuQ4TeeA46_6cvDnb-jm4vzXaFyXJQm150Qtaq5cE5yIoQGcTCUD9-Ih4LUSgKi3OkRBY0r8NkExZaVUUUTO2mBd1xEmOraHtqazadhHWFoHNEDLnOW66VwjiWM6Kt3RtpOyQs1SXsaXCeJpkcXE5EiCaNML2SQhmyLkCv1YvTTvB2j8m3yYFLEiTdOv8wOwCVNswrxnExXaTWpcHaJZwmW8QodLtZrypz4bgIApIIe7tkL1StVvWLV5feUGqwf_g9Xv6FM6s0_qHKKtxdNLOAKYs3DH2aJfAe8I8r8
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: Unpaywall
  dbid: UNPAY
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lj9MwELage0AceC2IwIJy4EjS-BXH3NpqV6s9VEhQ7XKybMeGakO32k3F49czdtxqCxIS3KJoYjmasecbe-YbhN5gKxwzhhZWSAhQaucLXXNagO-zjHhcVS4myM7r0wU7u-AX6cAt1sI452LymSvDY7zLX7ruuxjXJJCnybGkmIBbHEMoHrwtK9etv4sOag5YfIQOFvP3k0-hoxyuZUHj3eTLRKw51rEHIQSFBJcAlcGZ8T13FFn7U5uVPcR5b7Na6x_fdNfdcj4nD5HaTnvIObksN70p7c_fGB3__78eoQcJl-aTwZAeoztu9QTdv8VWeIjO3Pn0XX4cEiSLKTi_Nj-P56r5NNT0pnrOfNJ9vrpe9l--5gCH8w_rZTiLzwMHCAw_H5LOb56ixcnxx9lpkVoxFJZVTV-wxhBnuHcE0DgWFJyYhbBaC4C7VkvnOfbheJm4hjZaiMZzz2jttGnbivKWPkOj1dXKPUe50AZkQJYazSRpDRGVodI3ssV1K0SGyFYjyiae8tAuo1MxXqmkmsxmYJwqqFElNWbo7e6j9UDT8XfxaVD1TjRwbMcXoBaVlqxqm8pY6T3jkjPrmMYW8FWNsQt1NbzJ0GFQ5W6QpLcMHW0NR6X94EYB0AxhP-zoGSp2xvTHVAcD3Zvqi3-UP0Kj_nrjXgFU6s3rtB5-AZvhCwU
  priority: 102
  providerName: Unpaywall
Title eWB: Event-Based Weight Binarization Algorithm for Spiking Neural Networks
URI https://ieeexplore.ieee.org/document/9363894
https://www.proquest.com/docview/2501322887
https://ieeexplore.ieee.org/ielx7/6287639/9312710/09363894.pdf
https://doaj.org/article/d80bc9ff45954ce4a1c075611e006858
UnpaywallVersion publishedVersion
Volume 9
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAFT
  databaseName: Open Access Digital Library
  customDbUrl:
  eissn: 2169-3536
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000816957
  issn: 2169-3536
  databaseCode: KQ8
  dateStart: 20130101
  isFulltext: true
  titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html
  providerName: Colorado Alliance of Research Libraries
– providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 2169-3536
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000816957
  issn: 2169-3536
  databaseCode: DOA
  dateStart: 20130101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 2169-3536
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000816957
  issn: 2169-3536
  databaseCode: M~E
  dateStart: 20130101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3fb9MwED5t4wH2wK-BFhhVHnhcuji245i3tto0TaJCgmrjKbIde0yUttpSIfjrOTtutAJCvEXRxbFzTu67y913AG-JEZZpTTMjJDoopXWZKjnN0PYZVjiS5zYkyE7L8xm7uOJXO3Dc18JYa0PymR36w_Avv1matQ-VnUjq7SvbhV1RlV2tVh9P8Q0kJBeRWIjk8mQ0meAa0AUsyBCBMZouvmV8Akd_bKqyhS8frhcr9eO7ms_vmZqzJ_B-M8kuw-TrcN3qofn5G3_j_67iKTyOmDMddZvkGezYxXPYv8dEeAAX9nL8Lj31yY_ZGA1bk16GmGk69vW6sVYzHc2vl7c37ZdvKULd9OPqxsfZU8_vgcNPu4TyuxcwOzv9NDnPYpuFzLC8ajNW6cJq7myBSJsIigbKoMusBEJZo6R1nDgfOi5sRSslROW4Y7S0SjdNTnlDX8LeYrmwh5AKpVEGZalWTBaNLkSuqXSVbEjZCJFAsXn-tYkc5L4VxrwOvkgu605ptVdaHZWWwHF_0aqj4Pi3-Ngrthf1_NnhBCqhjq9j3VS5NtI5xiVnxjJFDGKnkhDra2Z4lcCBV1w_SNRZAkebbVLHd_2uRhDpXXr8WieQ9Vvnj6mq0ABza6qv_n6X1_DIS3WBniPYa2_X9g1Cn1YPQshgEHb-AB7Mph9Gn38BmF7_mA
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3db9MwED-N8TB44GsgAgPywOPSxbEdx7y11aYytr6waXuzbMceE6WttlQI_nrOiRutgBBvUXR27Nw597vLfQC8J1Y4ZgzNrJBooJTOZ7rkNEPdZ1nhSZ67NkB2Wk7O2fElv9yC_T4XxjnXBp-5Qbhs_-XXC7sKrrIDSYN-ZffgPmeM8S5bq_eohBYSkotYWojk8mA4HuMu0AgsyAChMSovvqF-2ir9sa3KBsLcWc2X-sd3PZvdUTZHj-F0vcwuxuTrYNWYgf35WwXH_93HE3gUUWc67MTkKWy5-TN4eKcW4S4cu4vRh_QwhD9mI1RtdXrRek3TUcjYjdma6XB2tbi5br58SxHspp-X18HTnoYKHzj9tAspv30O50eHZ-NJFhstZJblVZOxyhTOcO8KxNpEUFRRFo1mLRDMWi2d58QH53HhKlppISrPPaOl06auc8pr-gK254u5ewmp0AZpkJYazWRRm0LkhkpfyZqUtRAJFOv3r2ysQh6aYcxUa43kUnVMU4FpKjItgf1-0LIrwvFv8lFgbE8aKmi3N5AJKh5IVVe5sdJ7xiVn1jFNLKKnkhAXsmZ4lcBuYFw_SeRZAntrMVHxtN8qhJHBqMfvdQJZLzp_LFW3LTA3lvrq7095BzuTs9MTdfJx-uk1PAgjOrfPHmw3Nyv3BoFQY9628v8LFPoATw
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lj9MwELage0AceC2IwIJy4EjS-BXH3NpqV6s9VEhQ7XKybMeGakO32k3F49czdtxqCxIS3KJoYjmasecbe-YbhN5gKxwzhhZWSAhQaucLXXNagO-zjHhcVS4myM7r0wU7u-AX6cAt1sI452LymSvDY7zLX7ruuxjXJJCnybGkmIBbHEMoHrwtK9etv4sOag5YfIQOFvP3k0-hoxyuZUHj3eTLRKw51rEHIQSFBJcAlcGZ8T13FFn7U5uVPcR5b7Na6x_fdNfdcj4nD5HaTnvIObksN70p7c_fGB3__78eoQcJl-aTwZAeoztu9QTdv8VWeIjO3Pn0XX4cEiSLKTi_Nj-P56r5NNT0pnrOfNJ9vrpe9l--5gCH8w_rZTiLzwMHCAw_H5LOb56ixcnxx9lpkVoxFJZVTV-wxhBnuHcE0DgWFJyYhbBaC4C7VkvnOfbheJm4hjZaiMZzz2jttGnbivKWPkOj1dXKPUe50AZkQJYazSRpDRGVodI3ssV1K0SGyFYjyiae8tAuo1MxXqmkmsxmYJwqqFElNWbo7e6j9UDT8XfxaVD1TjRwbMcXoBaVlqxqm8pY6T3jkjPrmMYW8FWNsQt1NbzJ0GFQ5W6QpLcMHW0NR6X94EYB0AxhP-zoGSp2xvTHVAcD3Zvqi3-UP0Kj_nrjXgFU6s3rtB5-AZvhCwU
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=eWB%3A+Event-Based+Weight+Binarization+Algorithm+for+Spiking+Neural+Networks&rft.jtitle=IEEE+access&rft.au=Kim%2C+Dohun&rft.au=Kim%2C+Guhyun&rft.au=Hwang%2C+Cheol+Seong&rft.au=Jeong%2C+Doo+Seok&rft.date=2021&rft.pub=IEEE&rft.eissn=2169-3536&rft.volume=9&rft.spage=38097&rft.epage=38106&rft_id=info:doi/10.1109%2FACCESS.2021.3062405&rft.externalDocID=9363894
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2169-3536&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2169-3536&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2169-3536&client=summon