eWB: Event-Based Weight Binarization Algorithm for Spiking Neural Networks
Learning binary weights to minimize the difference between target and actual outputs can be considered as a parameter optimization task within the given constraints, and thus, it belongs to the application domain of the Lagrange multiplier method (LMM). Based on the LMM, we propose a novel event-bas...
        Saved in:
      
    
          | Published in | IEEE access Vol. 9; pp. 38097 - 38106 | 
|---|---|
| Main Authors | , , , | 
| Format | Journal Article | 
| Language | English | 
| Published | 
        Piscataway
          IEEE
    
        2021
     The Institute of Electrical and Electronics Engineers, Inc. (IEEE)  | 
| Subjects | |
| Online Access | Get full text | 
| ISSN | 2169-3536 2169-3536  | 
| DOI | 10.1109/ACCESS.2021.3062405 | 
Cover
| Abstract | Learning binary weights to minimize the difference between target and actual outputs can be considered as a parameter optimization task within the given constraints, and thus, it belongs to the application domain of the Lagrange multiplier method (LMM). Based on the LMM, we propose a novel event-based weight binarization (eWB) algorithm for spiking neural networks (SNNs) with binary synaptic weights (−1, 1). The algorithm features (i) event-based asymptotic weight binarization using local data only, (ii) full compatibility with event-based end-to-end learning algorithms (e.g., event-driven random backpropagation (eRBP) algorithm), and (iii) the capability to address various constraints (including the binary weight constraint). As a proof of concept, we combine eWB with eRBP (eWB-eRBP) to obtain a single algorithm for learning binary weights to generate correct classifications. Fully connected SNNs were trained using eWB-eRBP and achieved an accuracy of 95.35% on MNIST. To the best of our knowledge, this is the first report on completely binary SNNs trained using an event-based learning algorithm. Given that eRBP with full-precision (32-bit) weights exhibited 97.20% accuracy, the binarization comes at the cost of an accuracy reduction of approximately 1.85%. The python code is available online: https://github.com/galactico7/eWB . | 
    
|---|---|
| AbstractList | Learning binary weights to minimize the difference between target and actual outputs can be considered as a parameter optimization task within the given constraints, and thus, it belongs to the application domain of the Lagrange multiplier method (LMM). Based on the LMM, we propose a novel event-based weight binarization (eWB) algorithm for spiking neural networks (SNNs) with binary synaptic weights (−1, 1). The algorithm features (i) event-based asymptotic weight binarization using local data only, (ii) full compatibility with event-based end-to-end learning algorithms (e.g., event-driven random backpropagation (eRBP) algorithm), and (iii) the capability to address various constraints (including the binary weight constraint). As a proof of concept, we combine eWB with eRBP (eWB-eRBP) to obtain a single algorithm for learning binary weights to generate correct classifications. Fully connected SNNs were trained using eWB-eRBP and achieved an accuracy of 95.35% on MNIST. To the best of our knowledge, this is the first report on completely binary SNNs trained using an event-based learning algorithm. Given that eRBP with full-precision (32-bit) weights exhibited 97.20% accuracy, the binarization comes at the cost of an accuracy reduction of approximately 1.85%. The python code is available online: https://github.com/galactico7/eWB . | 
    
| Author | Jeong, Doo Seok Kim, Guhyun Hwang, Cheol Seong Kim, Dohun  | 
    
| Author_xml | – sequence: 1 givenname: Dohun surname: Kim fullname: Kim, Dohun organization: Department of Material Science and Engineering, Seoul National University, Seoul, Republic of Korea – sequence: 2 givenname: Guhyun surname: Kim fullname: Kim, Guhyun organization: Division of Materials Science and Engineering, Hanyang University, Seoul, Republic of Korea – sequence: 3 givenname: Cheol Seong orcidid: 0000-0002-6254-9758 surname: Hwang fullname: Hwang, Cheol Seong organization: Department of Material Science and Engineering, Seoul National University, Seoul, Republic of Korea – sequence: 4 givenname: Doo Seok orcidid: 0000-0001-7954-2213 surname: Jeong fullname: Jeong, Doo Seok email: dooseokj@hanyang.ac.kr organization: Division of Materials Science and Engineering, Hanyang University, Seoul, Republic of Korea  | 
    
| BookMark | eNptkU1PGzEQhq2KSlDgF3BZqedN_bm2e0uitKVCcEgRR8vxjoPDsk5tp4j--i4siqoIX8YazfPOzDuf0FEfe0DoguAJIVh_mc7ni-VyQjElE4YbyrH4gE4oaXTNBGuO_vsfo_OcN3h4akgJeYJ-wt3sa7X4A32pZzZDW91BWN-XahZ6m8JfW0Lsq2m3jimU-8fKx1Qtt-Eh9OvqGnbJdkMoTzE95DP00dsuw_lbPEW33xa_5j_qq5vvl_PpVe04VqXmakVhJTxQKSmRjGrtNJZWKtI6q8EL4inDnIJiykqpvPCcNWBXbYuZaNkpuhx122g3ZpvCo03PJtpgXhMxrY1NJbgOTKvwymnvudCCO-CWOCxFQwhg3CihBi0-au36rX1-sl23FyTYvNhrrHOQs3mx17zZO2CfR2yb4u8d5GI2cZf6YWtDBSaMUqXkUKXHKpdizgm8caG8GlqSDd2-w3jAww7sgD2c633qYqQCAOwJzRqmNGf_AN1_pWA | 
    
| CODEN | IAECCG | 
    
| CitedBy_id | crossref_primary_10_1109_TGCN_2023_3337748 crossref_primary_10_1109_JETCAS_2023_3328911  | 
    
| Cites_doi | 10.1162/neco.2009.11-08-901 10.3389/fnins.2018.00665 10.1063/1.5042243 10.3389/fnins.2016.00241 10.1109/ACCESS.2020.3001296 10.3389/fnins.2019.00095 10.3389/fnins.2018.00774 10.3389/fnins.2015.00222 10.1038/nn1643 10.1017/CBO9780511815706 10.3389/fnins.2013.00272 10.1007/978-3-319-46493-0_32 10.1523/JNEUROSCI.18-24-10464.1998 10.1038/s41586-019-1677-2 10.1109/MM.2018.112130359 10.3389/fnins.2017.00324 10.1016/S0925-2312(01)00658-0 10.1109/TED.2013.2263000 10.1145/3320288.3320304 10.3389/fnins.2019.00189  | 
    
| ContentType | Journal Article | 
    
| Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021 | 
    
| Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021 | 
    
| DBID | 97E ESBDL RIA RIE AAYXX CITATION 7SC 7SP 7SR 8BQ 8FD JG9 JQ2 L7M L~C L~D ADTOC UNPAY DOA  | 
    
| DOI | 10.1109/ACCESS.2021.3062405 | 
    
| DatabaseName | IEEE All-Society Periodicals Package (ASPP) 2005–Present IEEE Xplore Open Access Journals IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE/IET Electronic Library CrossRef Computer and Information Systems Abstracts Electronics & Communications Abstracts Engineered Materials Abstracts METADEX Technology Research Database Materials Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts  Academic Computer and Information Systems Abstracts Professional Unpaywall for CDI: Periodical Content Unpaywall DOAJ Directory of Open Access Journals  | 
    
| DatabaseTitle | CrossRef Materials Research Database Engineered Materials Abstracts Technology Research Database Computer and Information Systems Abstracts – Academic Electronics & Communications Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Advanced Technologies Database with Aerospace METADEX Computer and Information Systems Abstracts Professional  | 
    
| DatabaseTitleList | Materials Research Database | 
    
| Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: RIE name: IEEE Electronic Library (IEL) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher – sequence: 3 dbid: UNPAY name: Unpaywall url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/ sourceTypes: Open Access Repository  | 
    
| DeliveryMethod | fulltext_linktorsrc | 
    
| Discipline | Engineering | 
    
| EISSN | 2169-3536 | 
    
| EndPage | 38106 | 
    
| ExternalDocumentID | oai_doaj_org_article_d80bc9ff45954ce4a1c075611e006858 10.1109/access.2021.3062405 10_1109_ACCESS_2021_3062405 9363894  | 
    
| Genre | orig-research | 
    
| GrantInformation_xml | – fundername: Ministry of Trade, Industry & Energy and Korea Semiconductor Research Consortium funderid: 10.13039/501100003052 – fundername: National Research Foundation of Korea grantid: NRF-2019R1C1C1009810 funderid: 10.13039/501100003725 – fundername: Future Semiconductor Device Technology Development Program grantid: 20012002 funderid: 10.13039/501100003662  | 
    
| GroupedDBID | 0R~ 4.4 5VS 6IK 97E AAJGR ABAZT ABVLG ACGFS ADBBV AGSQL ALMA_UNASSIGNED_HOLDINGS BCNDV BEFXN BFFAM BGNUA BKEBE BPEOZ EBS EJD ESBDL GROUPED_DOAJ IPLJI JAVBF KQ8 M43 M~E O9- OCL OK1 RIA RIE RNS AAYXX CITATION 7SC 7SP 7SR 8BQ 8FD JG9 JQ2 L7M L~C L~D ADTOC UNPAY  | 
    
| ID | FETCH-LOGICAL-c408t-48b2eb5fe2772173299c907a781dca9ef51f23042e838a778f5f436eabdd035d3 | 
    
| IEDL.DBID | RIE | 
    
| ISSN | 2169-3536 | 
    
| IngestDate | Fri Oct 03 12:53:56 EDT 2025 Tue Aug 19 20:01:48 EDT 2025 Sun Jun 29 16:44:50 EDT 2025 Wed Oct 01 04:43:56 EDT 2025 Thu Apr 24 22:56:46 EDT 2025 Wed Aug 27 02:45:36 EDT 2025  | 
    
| IsDoiOpenAccess | true | 
    
| IsOpenAccess | true | 
    
| IsPeerReviewed | true | 
    
| IsScholarly | true | 
    
| Language | English | 
    
| License | https://creativecommons.org/licenses/by/4.0/legalcode cc-by  | 
    
| LinkModel | DirectLink | 
    
| MergedId | FETCHMERGED-LOGICAL-c408t-48b2eb5fe2772173299c907a781dca9ef51f23042e838a778f5f436eabdd035d3 | 
    
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14  | 
    
| ORCID | 0000-0002-6254-9758 0000-0001-7954-2213  | 
    
| OpenAccessLink | https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/document/9363894 | 
    
| PQID | 2501322887 | 
    
| PQPubID | 4845423 | 
    
| PageCount | 10 | 
    
| ParticipantIDs | doaj_primary_oai_doaj_org_article_d80bc9ff45954ce4a1c075611e006858 crossref_primary_10_1109_ACCESS_2021_3062405 crossref_citationtrail_10_1109_ACCESS_2021_3062405 proquest_journals_2501322887 ieee_primary_9363894 unpaywall_primary_10_1109_access_2021_3062405  | 
    
| ProviderPackageCode | CITATION AAYXX  | 
    
| PublicationCentury | 2000 | 
    
| PublicationDate | 20210000 2021-00-00 20210101 2021-01-01  | 
    
| PublicationDateYYYYMMDD | 2021-01-01 | 
    
| PublicationDate_xml | – year: 2021 text: 20210000  | 
    
| PublicationDecade | 2020 | 
    
| PublicationPlace | Piscataway | 
    
| PublicationPlace_xml | – name: Piscataway | 
    
| PublicationTitle | IEEE access | 
    
| PublicationTitleAbbrev | Access | 
    
| PublicationYear | 2021 | 
    
| Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE)  | 
    
| Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)  | 
    
| References | ref13 ref12 ref15 ref14 ref11 ref10 lee (ref5) 2019 ref2 ref1 ref17 ref16 ref19 courbariaux (ref20) 2015 maher (ref24) 1998 lu (ref22) 2020 glorot (ref26) 2010 ref23 courbariaux (ref18) 2016 platt (ref25) 0 ref28 ref27 ref8 horowitz (ref29) 2014 ref7 ref9 ref4 ref3 ref6 hubara (ref21) 2017; 18  | 
    
| References_xml | – start-page: 10 year: 2014 ident: ref29 article-title: 1.1 computing's energy problem (and what we can do about it) publication-title: IEEE Int Solid-State Circuits Conf (ISSCC) Dig Tech Papers – ident: ref11 doi: 10.1162/neco.2009.11-08-901 – ident: ref7 doi: 10.3389/fnins.2018.00665 – ident: ref2 doi: 10.1063/1.5042243 – ident: ref16 doi: 10.3389/fnins.2016.00241 – ident: ref10 doi: 10.1109/ACCESS.2020.3001296 – ident: ref4 doi: 10.3389/fnins.2019.00095 – year: 0 ident: ref25 article-title: Constrained differential optimization – ident: ref1 doi: 10.3389/fnins.2018.00774 – ident: ref23 doi: 10.3389/fnins.2015.00222 – ident: ref12 doi: 10.1038/nn1643 – ident: ref17 doi: 10.1017/CBO9780511815706 – ident: ref15 doi: 10.3389/fnins.2013.00272 – year: 2016 ident: ref18 article-title: Binarized neural networks: Training deep neural networks with weights and activations constrained to +1 or ?1 publication-title: arXiv 1602 02830 [cs] – ident: ref19 doi: 10.1007/978-3-319-46493-0_32 – volume: 18 start-page: 6869 year: 2017 ident: ref21 article-title: Quantized neural networks: Training neural networks with low precision weights and activations publication-title: J Mach Learn Res – start-page: 249 year: 2010 ident: ref26 article-title: Understanding the difficulty of training deep feedforward neural networks publication-title: Proc 13th Int Conf Artif Intell Statist – ident: ref6 doi: 10.1523/JNEUROSCI.18-24-10464.1998 – year: 2020 ident: ref22 article-title: Exploring the connection between binary and spiking neural networks publication-title: arXiv 2002 10064 – ident: ref3 doi: 10.1038/s41586-019-1677-2 – ident: ref27 doi: 10.1109/MM.2018.112130359 – ident: ref9 doi: 10.3389/fnins.2017.00324 – ident: ref13 doi: 10.1016/S0925-2312(01)00658-0 – year: 1998 ident: ref24 publication-title: Principles and Practice of Constraint Programming-CP98 4th International Conference CP98 Pisa Italy Oct 26-30 1998 Proceedings – start-page: 3123 year: 2015 ident: ref20 article-title: Binaryconnect: Training deep neural networks with binary weights during propagations publication-title: Proc Adv Neural Inf Process Syst – ident: ref14 doi: 10.1109/TED.2013.2263000 – ident: ref28 doi: 10.1145/3320288.3320304 – year: 2019 ident: ref5 article-title: Enabling spike-based backpropagation in state-of-the-art deep neural network architectures publication-title: arXiv 1903 06379 – ident: ref8 doi: 10.3389/fnins.2019.00189  | 
    
| SSID | ssj0000816957 | 
    
| Score | 2.2357438 | 
    
| Snippet | Learning binary weights to minimize the difference between target and actual outputs can be considered as a parameter optimization task within the given... | 
    
| SourceID | doaj unpaywall proquest crossref ieee  | 
    
| SourceType | Open Website Open Access Repository Aggregation Database Enrichment Source Index Database Publisher  | 
    
| StartPage | 38097 | 
    
| SubjectTerms | Accuracy Algorithms Approximation algorithms Back propagation Back propagation networks Classification algorithms Event-based weight binarization event-driven learning algorithm Lagrange multiplier Lagrange multiplier method Linear programming Machine learning Neural networks Neurons Optimization Spiking spiking neural networks Synapses System-on-chip Training Weight  | 
    
| SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LTxsxELYqLm0PqJQilgLygWO32Gt7bXNLIlDEgQtFcLNsr12QQhJBUNV_z9jrRImQyqXX1aw1OzPr-WY0D4ROqJeBO8dqLzUEKG2ItW0Fq8H3ed5ESkjIBbJX7fiGX96Ju7VVX6kmrB8P3AvutFPEeR0jF1pwH7ilHrxcS2lI3Q0it_kSpdeCqXwHK9pqIcuYIUr06WA0gi-CgLChPwEmgyMTG64oT-wvK1Y20ObHl-nc_v1jJ5M1x3PxBW0XxIgHPac76EOYfkWf1-YI7qLLcDs8w-epdLEeglvq8G3OeOJh6rYtnZZ4MPk9e3pY3D9iAKr4ev6QsuQ4TeeA46_6cvDnb-jm4vzXaFyXJQm150Qtaq5cE5yIoQGcTCUD9-Ih4LUSgKi3OkRBY0r8NkExZaVUUUTO2mBd1xEmOraHtqazadhHWFoHNEDLnOW66VwjiWM6Kt3RtpOyQs1SXsaXCeJpkcXE5EiCaNML2SQhmyLkCv1YvTTvB2j8m3yYFLEiTdOv8wOwCVNswrxnExXaTWpcHaJZwmW8QodLtZrypz4bgIApIIe7tkL1StVvWLV5feUGqwf_g9Xv6FM6s0_qHKKtxdNLOAKYs3DH2aJfAe8I8r8 priority: 102 providerName: Directory of Open Access Journals – databaseName: Unpaywall dbid: UNPAY link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lj9MwELage0AceC2IwIJy4EjS-BXH3NpqV6s9VEhQ7XKybMeGakO32k3F49czdtxqCxIS3KJoYjmasecbe-YbhN5gKxwzhhZWSAhQaucLXXNagO-zjHhcVS4myM7r0wU7u-AX6cAt1sI452LymSvDY7zLX7ruuxjXJJCnybGkmIBbHEMoHrwtK9etv4sOag5YfIQOFvP3k0-hoxyuZUHj3eTLRKw51rEHIQSFBJcAlcGZ8T13FFn7U5uVPcR5b7Na6x_fdNfdcj4nD5HaTnvIObksN70p7c_fGB3__78eoQcJl-aTwZAeoztu9QTdv8VWeIjO3Pn0XX4cEiSLKTi_Nj-P56r5NNT0pnrOfNJ9vrpe9l--5gCH8w_rZTiLzwMHCAw_H5LOb56ixcnxx9lpkVoxFJZVTV-wxhBnuHcE0DgWFJyYhbBaC4C7VkvnOfbheJm4hjZaiMZzz2jttGnbivKWPkOj1dXKPUe50AZkQJYazSRpDRGVodI3ssV1K0SGyFYjyiae8tAuo1MxXqmkmsxmYJwqqFElNWbo7e6j9UDT8XfxaVD1TjRwbMcXoBaVlqxqm8pY6T3jkjPrmMYW8FWNsQt1NbzJ0GFQ5W6QpLcMHW0NR6X94EYB0AxhP-zoGSp2xvTHVAcD3Zvqi3-UP0Kj_nrjXgFU6s3rtB5-AZvhCwU priority: 102 providerName: Unpaywall  | 
    
| Title | eWB: Event-Based Weight Binarization Algorithm for Spiking Neural Networks | 
    
| URI | https://ieeexplore.ieee.org/document/9363894 https://www.proquest.com/docview/2501322887 https://ieeexplore.ieee.org/ielx7/6287639/9312710/09363894.pdf https://doaj.org/article/d80bc9ff45954ce4a1c075611e006858  | 
    
| UnpaywallVersion | publishedVersion | 
    
| Volume | 9 | 
    
| hasFullText | 1 | 
    
| inHoldings | 1 | 
    
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAFT databaseName: Open Access Digital Library customDbUrl: eissn: 2169-3536 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000816957 issn: 2169-3536 databaseCode: KQ8 dateStart: 20130101 isFulltext: true titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html providerName: Colorado Alliance of Research Libraries – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 2169-3536 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000816957 issn: 2169-3536 databaseCode: DOA dateStart: 20130101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 2169-3536 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000816957 issn: 2169-3536 databaseCode: M~E dateStart: 20130101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre  | 
    
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3fb9MwED5t4wH2wK-BFhhVHnhcuji245i3tto0TaJCgmrjKbIde0yUttpSIfjrOTtutAJCvEXRxbFzTu67y913AG-JEZZpTTMjJDoopXWZKjnN0PYZVjiS5zYkyE7L8xm7uOJXO3Dc18JYa0PymR36w_Avv1matQ-VnUjq7SvbhV1RlV2tVh9P8Q0kJBeRWIjk8mQ0meAa0AUsyBCBMZouvmV8Akd_bKqyhS8frhcr9eO7ms_vmZqzJ_B-M8kuw-TrcN3qofn5G3_j_67iKTyOmDMddZvkGezYxXPYv8dEeAAX9nL8Lj31yY_ZGA1bk16GmGk69vW6sVYzHc2vl7c37ZdvKULd9OPqxsfZU8_vgcNPu4TyuxcwOzv9NDnPYpuFzLC8ajNW6cJq7myBSJsIigbKoMusBEJZo6R1nDgfOi5sRSslROW4Y7S0SjdNTnlDX8LeYrmwh5AKpVEGZalWTBaNLkSuqXSVbEjZCJFAsXn-tYkc5L4VxrwOvkgu605ptVdaHZWWwHF_0aqj4Pi3-Ngrthf1_NnhBCqhjq9j3VS5NtI5xiVnxjJFDGKnkhDra2Z4lcCBV1w_SNRZAkebbVLHd_2uRhDpXXr8WieQ9Vvnj6mq0ABza6qv_n6X1_DIS3WBniPYa2_X9g1Cn1YPQshgEHb-AB7Mph9Gn38BmF7_mA | 
    
| linkProvider | IEEE | 
    
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3db9MwED-N8TB44GsgAgPywOPSxbEdx7y11aYytr6waXuzbMceE6WttlQI_nrOiRutgBBvUXR27Nw597vLfQC8J1Y4ZgzNrJBooJTOZ7rkNEPdZ1nhSZ67NkB2Wk7O2fElv9yC_T4XxjnXBp-5Qbhs_-XXC7sKrrIDSYN-ZffgPmeM8S5bq_eohBYSkotYWojk8mA4HuMu0AgsyAChMSovvqF-2ir9sa3KBsLcWc2X-sd3PZvdUTZHj-F0vcwuxuTrYNWYgf35WwXH_93HE3gUUWc67MTkKWy5-TN4eKcW4S4cu4vRh_QwhD9mI1RtdXrRek3TUcjYjdma6XB2tbi5br58SxHspp-X18HTnoYKHzj9tAspv30O50eHZ-NJFhstZJblVZOxyhTOcO8KxNpEUFRRFo1mLRDMWi2d58QH53HhKlppISrPPaOl06auc8pr-gK254u5ewmp0AZpkJYazWRRm0LkhkpfyZqUtRAJFOv3r2ysQh6aYcxUa43kUnVMU4FpKjItgf1-0LIrwvFv8lFgbE8aKmi3N5AJKh5IVVe5sdJ7xiVn1jFNLKKnkhAXsmZ4lcBuYFw_SeRZAntrMVHxtN8qhJHBqMfvdQJZLzp_LFW3LTA3lvrq7095BzuTs9MTdfJx-uk1PAgjOrfPHmw3Nyv3BoFQY9628v8LFPoATw | 
    
| linkToUnpaywall | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lj9MwELage0AceC2IwIJy4EjS-BXH3NpqV6s9VEhQ7XKybMeGakO32k3F49czdtxqCxIS3KJoYjmasecbe-YbhN5gKxwzhhZWSAhQaucLXXNagO-zjHhcVS4myM7r0wU7u-AX6cAt1sI452LymSvDY7zLX7ruuxjXJJCnybGkmIBbHEMoHrwtK9etv4sOag5YfIQOFvP3k0-hoxyuZUHj3eTLRKw51rEHIQSFBJcAlcGZ8T13FFn7U5uVPcR5b7Na6x_fdNfdcj4nD5HaTnvIObksN70p7c_fGB3__78eoQcJl-aTwZAeoztu9QTdv8VWeIjO3Pn0XX4cEiSLKTi_Nj-P56r5NNT0pnrOfNJ9vrpe9l--5gCH8w_rZTiLzwMHCAw_H5LOb56ixcnxx9lpkVoxFJZVTV-wxhBnuHcE0DgWFJyYhbBaC4C7VkvnOfbheJm4hjZaiMZzz2jttGnbivKWPkOj1dXKPUe50AZkQJYazSRpDRGVodI3ssV1K0SGyFYjyiae8tAuo1MxXqmkmsxmYJwqqFElNWbo7e6j9UDT8XfxaVD1TjRwbMcXoBaVlqxqm8pY6T3jkjPrmMYW8FWNsQt1NbzJ0GFQ5W6QpLcMHW0NR6X94EYB0AxhP-zoGSp2xvTHVAcD3Zvqi3-UP0Kj_nrjXgFU6s3rtB5-AZvhCwU | 
    
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=eWB%3A+Event-Based+Weight+Binarization+Algorithm+for+Spiking+Neural+Networks&rft.jtitle=IEEE+access&rft.au=Kim%2C+Dohun&rft.au=Kim%2C+Guhyun&rft.au=Hwang%2C+Cheol+Seong&rft.au=Jeong%2C+Doo+Seok&rft.date=2021&rft.pub=IEEE&rft.eissn=2169-3536&rft.volume=9&rft.spage=38097&rft.epage=38106&rft_id=info:doi/10.1109%2FACCESS.2021.3062405&rft.externalDocID=9363894 | 
    
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2169-3536&client=summon | 
    
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2169-3536&client=summon | 
    
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2169-3536&client=summon |