eWB: Event-Based Weight Binarization Algorithm for Spiking Neural Networks
Learning binary weights to minimize the difference between target and actual outputs can be considered as a parameter optimization task within the given constraints, and thus, it belongs to the application domain of the Lagrange multiplier method (LMM). Based on the LMM, we propose a novel event-bas...
Saved in:
| Published in | IEEE access Vol. 9; pp. 38097 - 38106 |
|---|---|
| Main Authors | , , , |
| Format | Journal Article |
| Language | English |
| Published |
Piscataway
IEEE
2021
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Subjects | |
| Online Access | Get full text |
| ISSN | 2169-3536 2169-3536 |
| DOI | 10.1109/ACCESS.2021.3062405 |
Cover
| Summary: | Learning binary weights to minimize the difference between target and actual outputs can be considered as a parameter optimization task within the given constraints, and thus, it belongs to the application domain of the Lagrange multiplier method (LMM). Based on the LMM, we propose a novel event-based weight binarization (eWB) algorithm for spiking neural networks (SNNs) with binary synaptic weights (−1, 1). The algorithm features (i) event-based asymptotic weight binarization using local data only, (ii) full compatibility with event-based end-to-end learning algorithms (e.g., event-driven random backpropagation (eRBP) algorithm), and (iii) the capability to address various constraints (including the binary weight constraint). As a proof of concept, we combine eWB with eRBP (eWB-eRBP) to obtain a single algorithm for learning binary weights to generate correct classifications. Fully connected SNNs were trained using eWB-eRBP and achieved an accuracy of 95.35% on MNIST. To the best of our knowledge, this is the first report on completely binary SNNs trained using an event-based learning algorithm. Given that eRBP with full-precision (32-bit) weights exhibited 97.20% accuracy, the binarization comes at the cost of an accuracy reduction of approximately 1.85%. The python code is available online: https://github.com/galactico7/eWB . |
|---|---|
| Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ISSN: | 2169-3536 2169-3536 |
| DOI: | 10.1109/ACCESS.2021.3062405 |