Adaptive Resonance Theory-based Topological Clustering with a Divisive Hierarchical Structure Capable of Continual Learning

Adaptive Resonance Theory (ART) is considered as an effective approach for realizing continual learning thanks to its ability to handle the plasticity-stability dilemma. In general, however, the clustering performance of ART-based algorithms strongly depends on the specification of a similarity thre...

Full description

Saved in:
Bibliographic Details
Published inIEEE access Vol. 10; p. 1
Main Authors Masuyama, Naoki, Amako, Narito, Yamada, Yuna, Nojima, Yusuke, Ishibuchi, Hisao
Format Journal Article
LanguageEnglish
Published Piscataway IEEE 2022
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text
ISSN2169-3536
2169-3536
DOI10.1109/ACCESS.2022.3186479

Cover

Abstract Adaptive Resonance Theory (ART) is considered as an effective approach for realizing continual learning thanks to its ability to handle the plasticity-stability dilemma. In general, however, the clustering performance of ART-based algorithms strongly depends on the specification of a similarity threshold, i.e., a vigilance parameter, which is data-dependent and specified by hand. This paper proposes an ART-based topological clustering algorithm with a mechanism that automatically estimates a similarity threshold from the distribution of data points. In addition, for improving information extraction performance, a divisive hierarchical clustering algorithm capable of continual learning is proposed by introducing a hierarchical structure to the proposed algorithm. Experimental results demonstrate that the proposed algorithm has high clustering performance comparable with recently-proposed state-of-the-art hierarchical clustering algorithms.
AbstractList Adaptive Resonance Theory (ART) is considered as an effective approach for realizing continual learning thanks to its ability to handle the plasticity-stability dilemma. In general, however, the clustering performance of ART-based algorithms strongly depends on the specification of a similarity threshold, i.e., a vigilance parameter, which is data-dependent and specified by hand. This paper proposes an ART-based topological clustering algorithm with a mechanism that automatically estimates a similarity threshold from the distribution of data points. In addition, for improving information extraction performance, a divisive hierarchical clustering algorithm capable of continual learning is proposed by introducing a hierarchical structure to the proposed algorithm. Experimental results demonstrate that the proposed algorithm has high clustering performance comparable with recently-proposed state-of-the-art hierarchical clustering algorithms.
Author Masuyama, Naoki
Ishibuchi, Hisao
Nojima, Yusuke
Amako, Narito
Yamada, Yuna
Author_xml – sequence: 1
  givenname: Naoki
  orcidid: 0000-0002-2886-1588
  surname: Masuyama
  fullname: Masuyama, Naoki
  organization: Graduate School of Informatics, Osaka Metropolitan University, 1-1 Gakuen-cho Naka-ku, Sakai-Shi, Osaka, Japan
– sequence: 2
  givenname: Narito
  surname: Amako
  fullname: Amako, Narito
  organization: Graduate School of Engineering, Osaka Prefecture University, 1-1 Gakuen-cho Naka-ku, Sakai-Shi, Osaka, Japan
– sequence: 3
  givenname: Yuna
  surname: Yamada
  fullname: Yamada, Yuna
  organization: Graduate School of Engineering, Osaka Prefecture University, 1-1 Gakuen-cho Naka-ku, Sakai-Shi, Osaka, Japan
– sequence: 4
  givenname: Yusuke
  orcidid: 0000-0003-4853-1305
  surname: Nojima
  fullname: Nojima, Yusuke
  organization: Graduate School of Informatics, Osaka Metropolitan University, 1-1 Gakuen-cho Naka-ku, Sakai-Shi, Osaka, Japan
– sequence: 5
  givenname: Hisao
  orcidid: 0000-0001-9186-6472
  surname: Ishibuchi
  fullname: Ishibuchi, Hisao
  organization: Department of Computer Science and Engineering, Guangdong Provincial Key Laboratory of Brain-inspired Intelligent Computation, Southern University of Science and Technology, Shenzhen, China
BookMark eNptkV1r2zAUhs3oYF3XX9Abw66T6cMf0mXwurUQGCzZtTiWjxIFz_IkuSX0z0-pSxhhupE4Os_7Hun9mF0NbsAsu6NkSSmRX1ZNc7_ZLBlhbMmpqIpavsuuGa3kgpe8uvrn_CG7DeFA0hKpVNbX2cuqgzHaJ8x_YnADDBrz7R6dPy5aCNjlWze63u2shj5v-ilE9HbY5c827nPIv9onG070g0UPXu9f-zbRTzpOHvMGRmh7zJ3JGzdEO0zpeo3ghyTyKXtvoA94-7bfZL--3W-bh8X6x_fHZrVe6IKIuGBaMKELKKkBFKIFUom67WirKTFQVMIwKEkrsAXaMYmCUUOMpK2UrOhYyW-yx1m3c3BQo7e_wR-VA6teC87vFPhodY_KcNSdIbUoIJl3UlScFCBq0RrBGeNJq5i1pmGE4zP0_VmQEnXKQ4HWGII65aHe8kjY5xkbvfszYYjq4CY_pFcrVgkmGa9Ynbrk3KW9C8GjUdpGiDb9nAfbnx3mxC8d-AV7Odf_qbuZsoh4JqQgNac1_wtTeLlg
CODEN IAECCG
CitedBy_id crossref_primary_10_1016_j_artint_2024_104111
crossref_primary_10_3390_app14104139
crossref_primary_10_1109_ACCESS_2024_3467114
crossref_primary_10_1109_ACCESS_2024_3480460
crossref_primary_10_1109_ACCESS_2024_3442304
crossref_primary_10_1016_j_array_2023_100319
crossref_primary_10_3390_app132111980
crossref_primary_10_1109_ACCESS_2023_3331747
Cites_doi 10.1007/s10489-018-1238-7
10.1016/j.neunet.2017.09.001
10.1109/SSCI44817.2019.9003098
10.1109/TNNLS.2016.2570124
10.1016/j.neunet.2005.04.006
10.1016/S0893-6080(02)00078-3
10.1016/j.neucom.2017.06.053
10.1016/j.neunet.2017.11.003
10.1016/j.neunet.2019.07.018
10.1007/BF01908075
10.1109/TNN.2002.804221
10.1111/j.1551-6708.1987.tb00862.x
10.1007/978-3-642-15825-4_21
10.1016/j.neunet.2019.08.033
10.1016/j.spl.2012.07.020
10.1109/TKDE.2018.2876857
10.1016/0893-6080(91)90056-B
10.1109/TSP.2007.896065
10.1109/TNNLS.2019.2919723
10.1109/TNN.2007.900234
10.1109/CcS49175.2020.9231474
10.1109/ACCESS.2019.2921832
10.1109/TIT.1982.1056489
10.1016/j.neunet.2017.11.012
10.1016/j.eswa.2021.115662
10.1016/j.neucom.2016.12.038
10.1016/j.eswa.2019.113069
10.1109/2.33
10.1007/BF00337288
10.1109/TNNLS.2014.2329097
10.1609/aaai.v34i04.6099
10.1016/j.neucom.2020.11.053
10.1146/annurev-statistics-031017-100325
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022
DBID 97E
ESBDL
RIA
RIE
AAYXX
CITATION
7SC
7SP
7SR
8BQ
8FD
JG9
JQ2
L7M
L~C
L~D
ADTOC
UNPAY
DOA
DOI 10.1109/ACCESS.2022.3186479
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE Xplore Open Access Journals
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
Computer and Information Systems Abstracts
Electronics & Communications Abstracts
Engineered Materials Abstracts
METADEX
Technology Research Database
Materials Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Unpaywall for CDI: Periodical Content
Unpaywall
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
Materials Research Database
Engineered Materials Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Advanced Technologies Database with Aerospace
METADEX
Computer and Information Systems Abstracts Professional
DatabaseTitleList Materials Research Database


Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
– sequence: 3
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 2169-3536
EndPage 1
ExternalDocumentID oai_doaj_org_article_f3ecdf0784ac40d986304a878bf83223
10.1109/access.2022.3186479
10_1109_ACCESS_2022_3186479
9807317
Genre orig-research
GroupedDBID 0R~
4.4
5VS
6IK
97E
AAJGR
ABAZT
ABVLG
ACGFS
ADBBV
AGSQL
ALMA_UNASSIGNED_HOLDINGS
BCNDV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
EBS
EJD
ESBDL
GROUPED_DOAJ
IPLJI
JAVBF
KQ8
M43
M~E
O9-
OCL
OK1
RIA
RIE
RNS
AAYXX
CITATION
7SC
7SP
7SR
8BQ
8FD
JG9
JQ2
L7M
L~C
L~D
ADTOC
UNPAY
ID FETCH-LOGICAL-c408t-2c828c4a51fae88ba0687bd1bc10fa468f2a50b8eba1d29e821f0f91b9924d253
IEDL.DBID UNPAY
ISSN 2169-3536
IngestDate Fri Oct 03 12:53:28 EDT 2025
Sun Oct 26 04:11:12 EDT 2025
Mon Jun 30 04:58:38 EDT 2025
Wed Oct 01 04:58:12 EDT 2025
Thu Apr 24 22:53:57 EDT 2025
Wed Aug 27 02:23:57 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Language English
License https://creativecommons.org/licenses/by/4.0/legalcode
cc-by
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c408t-2c828c4a51fae88ba0687bd1bc10fa468f2a50b8eba1d29e821f0f91b9924d253
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0001-9186-6472
0000-0003-4853-1305
0000-0002-2886-1588
OpenAccessLink https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ielx7/6287639/9668973/09807317.pdf
PQID 2682923627
PQPubID 4845423
PageCount 1
ParticipantIDs proquest_journals_2682923627
doaj_primary_oai_doaj_org_article_f3ecdf0784ac40d986304a878bf83223
crossref_primary_10_1109_ACCESS_2022_3186479
ieee_primary_9807317
crossref_citationtrail_10_1109_ACCESS_2022_3186479
unpaywall_primary_10_1109_access_2022_3186479
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20220000
2022-00-00
20220101
2022-01-01
PublicationDateYYYYMMDD 2022-01-01
PublicationDate_xml – year: 2022
  text: 20220000
PublicationDecade 2020
PublicationPlace Piscataway
PublicationPlace_xml – name: Piscataway
PublicationTitle IEEE access
PublicationTitleAbbrev Access
PublicationYear 2022
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref13
ref35
ref12
ref15
ref37
ref14
ref31
ref30
ref11
ref10
ref32
ref2
Dua (ref33) 2019
ref1
ref17
ref16
ref19
ref18
ref24
ref23
ref26
ref25
ref20
Demšar (ref36) 2006; 7
Fritzke (ref4); 7
ref22
ref21
ref28
ref27
ref29
ref8
ref7
ref9
ref3
Strehl (ref34) 2002; 3
ref6
ref5
References_xml – ident: ref31
  doi: 10.1007/s10489-018-1238-7
– ident: ref19
  doi: 10.1016/j.neunet.2017.09.001
– ident: ref12
  doi: 10.1109/SSCI44817.2019.9003098
– ident: ref2
  doi: 10.1109/TNNLS.2016.2570124
– ident: ref17
  doi: 10.1016/j.neunet.2005.04.006
– ident: ref18
  doi: 10.1016/S0893-6080(02)00078-3
– ident: ref27
  doi: 10.1016/j.neucom.2017.06.053
– ident: ref10
  doi: 10.1016/j.neunet.2017.11.003
– ident: ref29
  doi: 10.1016/j.neunet.2019.07.018
– ident: ref35
  doi: 10.1007/BF01908075
– ident: ref1
  doi: 10.1109/TNN.2002.804221
– ident: ref6
  doi: 10.1111/j.1551-6708.1987.tb00862.x
– ident: ref9
  doi: 10.1007/978-3-642-15825-4_21
– ident: ref26
  doi: 10.1016/j.neunet.2019.08.033
– ident: ref30
  doi: 10.1016/j.spl.2012.07.020
– ident: ref37
  doi: 10.1109/TKDE.2018.2876857
– ident: ref7
  doi: 10.1016/0893-6080(91)90056-B
– ident: ref13
  doi: 10.1109/TSP.2007.896065
– ident: ref25
  doi: 10.1109/TNNLS.2019.2919723
– ident: ref8
  doi: 10.1109/TNN.2007.900234
– ident: ref14
  doi: 10.1109/CcS49175.2020.9231474
– ident: ref11
  doi: 10.1109/ACCESS.2019.2921832
– ident: ref16
  doi: 10.1109/TIT.1982.1056489
– ident: ref23
  doi: 10.1016/j.neunet.2017.11.012
– volume: 3
  start-page: 583
  year: 2002
  ident: ref34
  article-title: Cluster ensembles—A knowledge reuse framework for combining multiple partitions
  publication-title: J. Mach. Learn. Res.
– ident: ref21
  doi: 10.1016/j.eswa.2021.115662
– ident: ref32
  doi: 10.1016/j.neucom.2016.12.038
– ident: ref20
  doi: 10.1016/j.eswa.2019.113069
– ident: ref5
  doi: 10.1109/2.33
– year: 2019
  ident: ref33
  article-title: UCI machine learning repository
– ident: ref3
  doi: 10.1007/BF00337288
– volume: 7
  start-page: 625
  volume-title: Proc. Adv. Neural Inf. Process. Syst.
  ident: ref4
  article-title: A growing neural gas network learns topologies
– volume: 7
  start-page: 1
  year: 2006
  ident: ref36
  article-title: Statistical comparisons of classifiers over multiple data sets
  publication-title: J. Mach. Learn. Res.
– ident: ref22
  doi: 10.1109/TNNLS.2014.2329097
– ident: ref28
  doi: 10.1609/aaai.v34i04.6099
– ident: ref24
  doi: 10.1016/j.neucom.2020.11.053
– ident: ref15
  doi: 10.1146/annurev-statistics-031017-100325
SSID ssj0000816957
Score 2.2902231
Snippet Adaptive Resonance Theory (ART) is considered as an effective approach for realizing continual learning thanks to its ability to handle the...
SourceID doaj
unpaywall
proquest
crossref
ieee
SourceType Open Website
Open Access Repository
Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 1
SubjectTerms Adaptive Resonance Theory
Algorithms
Big Data
Cluster analysis
Clustering
Clustering algorithms
Continual Learning
Data mining
Data points
Hierarchical Clustering
Information retrieval
Kernel
Machine learning
Partitioning algorithms
Resonance
Similarity
Structural hierarchy
Subspace constraints
Topological Clustering
Topology
Training data
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3BTtwwELUqLrQHRKEVCxT5wLERsddx7OOSglZIcCmo3Cw7ttuVomUFu0KIn--MY1ZBleiFa2Jbjmc8M8_xvCHkWOPfNFazQqoIAAVsYwFhBBjDmo-FA_Q2TuWALq_k9EZc3Fa3g1JfeCespwfuF-4kjkPrIzgyYVtReq0kAHCrauUiKmPi-SyVHoCpZIMVk7qqM80QK_XJpGngiwAQcg44VUmBl7cGrigx9ucSK6-izc3VfGGfHm3XDRzP-TbZyhEjnfQz_Uw-hPkO-TTgEdwlzxNvF2i3KJ7GI4VGoH3SfXEKXsrT674UAgqENt0KyRGgI_01W_6hlv6YYYY59J7OMB05VUfp6M_ELLu6D7QBh-q6QO8iRTKrGbKY0kzM-vsLuTk_u26mRa6qUMD6qWXBWwBZrbAVizYo5WwpVe08cy0roxUgM26r0qngLPNcB8VZLKNmTgNU87wafyUb87t52CNUOu8gRIhaOC9Y62AwH4ITmL7rfMtHhL8ssGkz5ThWvuhMgh6lNr1UDErFZKmMyPd1p0XPuPF281OU3Lop0mWnB6BEJiuR-Z8Sjcguyn09iFZg-Vg9IocvemDy1n4wXCoO6iw5vC7WuvHPVG2qd_lqqvvvMdUD8hHH7E-BDskG6EL4BnHR0h2lLfAXpI0G5w
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: IEEE Electronic Library (IEL)
  dbid: RIE
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwELbaXoBDeRTEloJ84NhsY8dJ7OM2pVohlQut1FvkJ1oR7a5gI1T4851xvNEWEOIWJXbi5BuPZyaebwh5r_BvGqtZVskADgroxgzMCFCGNS-EAe-tiOWArj5V8xvx8ba83SOnYy6M9z5uPvNTPIz_8t3K9hgqO1MSBJLV-2S_ltWQqzXGU7CAhCrrRCzEcnU2axp4B3ABOQfPVFYCt2vtLD6Roz8VVXlgXz7ql2t990N33c5Sc_mUXG0HOeww-TrtN2Zqf_7G3_i_b_GMHCabk84GIXlO9vzyBXmyw0R4RH7NnF6j5qMYz0cSDk-HtP0M1zlHr4diCggpbboe6RWgI8UwLtX0YoE56tB7vsCE5lhfpaOfIzdt_83TBpZk03m6ChTpsBbIg0oTteuXl-Tm8sN1M89SXYbMilxuMm7BTbNClyxoL6XReSVr45ixLA9aAOpcl7mR3mjmuPKSs5AHxYwCZ8_xsnhFDparpX9NaGWcASMjKGGcYNbAzZz3RmACsHGWTwjfAtbaRFqOtTO6NjovuWoHlFtEuU0oT8jp2Gk9cHb8u_k5SsLYFAm34wlArU3ztw2Fty6APSU0fASnZFXkQstamoA6sZiQI0R6vEkCeUJOtnLVJuXwveWV5DAhKg6Xs1HW_hiqjhUzHwz1-O9PeUMeY6shMnRCDgBd_xZspY15FyfJPTE4EN4
  priority: 102
  providerName: IEEE
Title Adaptive Resonance Theory-based Topological Clustering with a Divisive Hierarchical Structure Capable of Continual Learning
URI https://ieeexplore.ieee.org/document/9807317
https://www.proquest.com/docview/2682923627
https://ieeexplore.ieee.org/ielx7/6287639/9668973/09807317.pdf
https://doaj.org/article/f3ecdf0784ac40d986304a878bf83223
UnpaywallVersion publishedVersion
Volume 10
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAFT
  databaseName: Open Access Digital Library
  customDbUrl:
  eissn: 2169-3536
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000816957
  issn: 2169-3536
  databaseCode: KQ8
  dateStart: 20130101
  isFulltext: true
  titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html
  providerName: Colorado Alliance of Research Libraries
– providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 2169-3536
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000816957
  issn: 2169-3536
  databaseCode: DOA
  dateStart: 20130101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 2169-3536
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000816957
  issn: 2169-3536
  databaseCode: M~E
  dateStart: 20130101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3db9MwELege0A88DUQhVH5gUfSxo7r2I9dYKqQmJBYxXiK7NhmEVFXsVbj45_nznGrDiQkeIsSO3Jy57vf2b7fEfJS424aK1kmVYAABWxjBjACjGHJC2EheitiOaB3p3K-EG_Pp-dpwS3mwnjv4-EzP8bLuJff-u5bOZEcydP0BPC50mUxybUC9WTleOXCbXIgp4DFB-Rgcfp-9gkryjGpsyLuTT5PxJoTE2sQQlDIOcSqSgo8wLXnjiJrfyqzcgNx3tksV-b7tem6Pedzcp_U22H3Z06-jDdrO25-_Mbo-P_f9YDcS7iUznpFekhu-eUjcnePrfCQ_Jw5s0LrSHHNH4k6PO1T-7Nj8IWOnvUFF1DstOo2SMEAHenHdn1BDX3dYh479J63mPQca7B09EPkr9189bQCt207Ty8DRcqsFrlSaaJ__fyYLE7enFXzLNVuyBqRq3XGGwjlGmGmLBivlDW5VKV1zDYsD0aAZnAzza3y1jDHtVechTxoZjUEhI5PiydksLxc-qeESussAJGghXWCNRZe5ry3ApOErWv4kPCtCOsmEZtjfY2ujgFOrutZVYE21yj3Osl9SF7tOq16Xo-_Nz9G3dg1RVLueAPkWKc5XofCNy4A5hIGfoLTSha5MKpUNqDdLIbkEGW_e0kS9JAcbTWtTgbkquZScZg0ksPjbKd9fwy11-gbQ332j-2PyAAk7V8AtlrbUVyTGMU0yFGaTL8A6c4g4g
linkProvider Unpaywall
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3fb9MwELbGeBg88GsgCgP8wOPSxY6T2I8lMBVY90In7S2yY3uqiNpqa4SAf547x406QIi3KIkTJ9_5fHf2fUfIW4WraaxkSSE9OCigGxMwI0AZljwTBry3LJQDmp0X0wvx6TK_3CPHQy6Mcy5sPnNjPAxr-XbVdBgqO1ESBJKVd8jdXAiR99laQ0QFS0iovIzUQixVJ5Oqgq8AJ5Bz8E1lIXDD1s70E1j6Y1mVWxbmQbdc6-_fdNvuTDanD8ls281-j8nXcbcx4-bHbwyO__sdj8iDaHXSSS8mj8meWz4h93e4CA_Jz4nVa9R9FCP6SMPhaJ-4n-BMZ-m8L6eAoNKq7ZBgARpSDORSTd8vMEsdWk8XmNIcKqy09Etgp-2uHa1gUjatoytPkRBrgUyoNJK7Xj0lF6cf5tU0iZUZkkakcpPwBhy1Ruicee2kNDotZGksMw1LvRaAO9d5aqQzmlmunOTMp14xo8DdszzPnpH95WrpnhNaGGvAzPBKGCtYY-Bh1jkjMAXY2IaPCN8CVjeRthyrZ7R1cF9SVfco14hyHVEekeOh0bpn7fj37e9QEoZbkXI7nADU6jiCa5-5xnqwqISGn2CVLLJUaFlK41ErZiNyiEgPD4kgj8jRVq7qqB5ual5IDkOi4HA5GWTtj67qUDPzVldf_P0tb8jBdD47q88-nn9-Se5hiz5OdET2AWn3CiynjXkdBswvkg4UKw
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lj9MwELage0AceC2ILgvygSNpY8dx7GM3sKqQWCGxFcspsmMbIqJuBa2Wx59nxnGrLkhIcIsSO3Lyjedhe74h5LnG3TRWsUyqAAEK6MYM3AhQhhUvhIXorYjlgN6cyflCvL4oL9KCW8yF8d7Hw2d-gpdxL7_z_bdqKjmSp-kp-OdKV8U01wrEk1WTlQs3yYEswRcfkYPF2dvZB6wox6TOirg3-SQRa05NrEEIQSHnEKsqKfAA1545iqz9qczKNY_z1ma5Mt-vTN_vGZ_Tu6TZDns4c_J5slnbSfvjN0bH__-ue-RO8kvpbBCk--SGXz4gt_fYCg_Jz5kzK9SOFNf8kajD0yG1PzsBW-jo-VBwAWGndb9BCgboSN9360_U0Jcd5rFD73mHSc-xBktP30X-2s0XT2sw27b39DJQpMzqkCuVJvrXjw_J4vTVeT3PUu2GrBW5Wme8hVCuFaZkwXilrMmlqqxjtmV5MAIkg5syt8pbwxzXXnEW8qCZ1RAQOl4Wj8hoebn0jwmV1llwRIIW1gnWWniZ894KTBK2ruVjwrcQNm0iNsf6Gn0TA5xcN7O6BmluEPcm4T4mL3adVgOvx9-bn6Bs7JoiKXe8ATg2aY43ofCtC-BzCQM_wWkli1wYVSkbUG8WY3KI2O9ekoAek-OtpDVJgXxtuFQcJo3k8DjbSd8fQx0k-tpQj_6x_TEZAdL-KfhWa_ssTaBfcIke7A
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Adaptive+Resonance+Theory-based+Topological+Clustering+with+a+Divisive+Hierarchical+Structure+Capable+of+Continual+Learning&rft.jtitle=IEEE+access&rft.au=Masuyama%2C+Naoki&rft.au=Amako%2C+Narito&rft.au=Yamada%2C+Yuna&rft.au=Nojima%2C+Yusuke&rft.date=2022&rft.pub=IEEE&rft.eissn=2169-3536&rft.spage=1&rft.epage=1&rft_id=info:doi/10.1109%2FACCESS.2022.3186479&rft.externalDocID=9807317
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2169-3536&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2169-3536&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2169-3536&client=summon