Adaptive Resonance Theory-based Topological Clustering with a Divisive Hierarchical Structure Capable of Continual Learning
Adaptive Resonance Theory (ART) is considered as an effective approach for realizing continual learning thanks to its ability to handle the plasticity-stability dilemma. In general, however, the clustering performance of ART-based algorithms strongly depends on the specification of a similarity thre...
Saved in:
| Published in | IEEE access Vol. 10; p. 1 |
|---|---|
| Main Authors | , , , , |
| Format | Journal Article |
| Language | English |
| Published |
Piscataway
IEEE
2022
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Subjects | |
| Online Access | Get full text |
| ISSN | 2169-3536 2169-3536 |
| DOI | 10.1109/ACCESS.2022.3186479 |
Cover
| Abstract | Adaptive Resonance Theory (ART) is considered as an effective approach for realizing continual learning thanks to its ability to handle the plasticity-stability dilemma. In general, however, the clustering performance of ART-based algorithms strongly depends on the specification of a similarity threshold, i.e., a vigilance parameter, which is data-dependent and specified by hand. This paper proposes an ART-based topological clustering algorithm with a mechanism that automatically estimates a similarity threshold from the distribution of data points. In addition, for improving information extraction performance, a divisive hierarchical clustering algorithm capable of continual learning is proposed by introducing a hierarchical structure to the proposed algorithm. Experimental results demonstrate that the proposed algorithm has high clustering performance comparable with recently-proposed state-of-the-art hierarchical clustering algorithms. |
|---|---|
| AbstractList | Adaptive Resonance Theory (ART) is considered as an effective approach for realizing continual learning thanks to its ability to handle the plasticity-stability dilemma. In general, however, the clustering performance of ART-based algorithms strongly depends on the specification of a similarity threshold, i.e., a vigilance parameter, which is data-dependent and specified by hand. This paper proposes an ART-based topological clustering algorithm with a mechanism that automatically estimates a similarity threshold from the distribution of data points. In addition, for improving information extraction performance, a divisive hierarchical clustering algorithm capable of continual learning is proposed by introducing a hierarchical structure to the proposed algorithm. Experimental results demonstrate that the proposed algorithm has high clustering performance comparable with recently-proposed state-of-the-art hierarchical clustering algorithms. |
| Author | Masuyama, Naoki Ishibuchi, Hisao Nojima, Yusuke Amako, Narito Yamada, Yuna |
| Author_xml | – sequence: 1 givenname: Naoki orcidid: 0000-0002-2886-1588 surname: Masuyama fullname: Masuyama, Naoki organization: Graduate School of Informatics, Osaka Metropolitan University, 1-1 Gakuen-cho Naka-ku, Sakai-Shi, Osaka, Japan – sequence: 2 givenname: Narito surname: Amako fullname: Amako, Narito organization: Graduate School of Engineering, Osaka Prefecture University, 1-1 Gakuen-cho Naka-ku, Sakai-Shi, Osaka, Japan – sequence: 3 givenname: Yuna surname: Yamada fullname: Yamada, Yuna organization: Graduate School of Engineering, Osaka Prefecture University, 1-1 Gakuen-cho Naka-ku, Sakai-Shi, Osaka, Japan – sequence: 4 givenname: Yusuke orcidid: 0000-0003-4853-1305 surname: Nojima fullname: Nojima, Yusuke organization: Graduate School of Informatics, Osaka Metropolitan University, 1-1 Gakuen-cho Naka-ku, Sakai-Shi, Osaka, Japan – sequence: 5 givenname: Hisao orcidid: 0000-0001-9186-6472 surname: Ishibuchi fullname: Ishibuchi, Hisao organization: Department of Computer Science and Engineering, Guangdong Provincial Key Laboratory of Brain-inspired Intelligent Computation, Southern University of Science and Technology, Shenzhen, China |
| BookMark | eNptkV1r2zAUhs3oYF3XX9Abw66T6cMf0mXwurUQGCzZtTiWjxIFz_IkuSX0z0-pSxhhupE4Os_7Hun9mF0NbsAsu6NkSSmRX1ZNc7_ZLBlhbMmpqIpavsuuGa3kgpe8uvrn_CG7DeFA0hKpVNbX2cuqgzHaJ8x_YnADDBrz7R6dPy5aCNjlWze63u2shj5v-ilE9HbY5c827nPIv9onG070g0UPXu9f-zbRTzpOHvMGRmh7zJ3JGzdEO0zpeo3ghyTyKXtvoA94-7bfZL--3W-bh8X6x_fHZrVe6IKIuGBaMKELKKkBFKIFUom67WirKTFQVMIwKEkrsAXaMYmCUUOMpK2UrOhYyW-yx1m3c3BQo7e_wR-VA6teC87vFPhodY_KcNSdIbUoIJl3UlScFCBq0RrBGeNJq5i1pmGE4zP0_VmQEnXKQ4HWGII65aHe8kjY5xkbvfszYYjq4CY_pFcrVgkmGa9Ynbrk3KW9C8GjUdpGiDb9nAfbnx3mxC8d-AV7Odf_qbuZsoh4JqQgNac1_wtTeLlg |
| CODEN | IAECCG |
| CitedBy_id | crossref_primary_10_1016_j_artint_2024_104111 crossref_primary_10_3390_app14104139 crossref_primary_10_1109_ACCESS_2024_3467114 crossref_primary_10_1109_ACCESS_2024_3480460 crossref_primary_10_1109_ACCESS_2024_3442304 crossref_primary_10_1016_j_array_2023_100319 crossref_primary_10_3390_app132111980 crossref_primary_10_1109_ACCESS_2023_3331747 |
| Cites_doi | 10.1007/s10489-018-1238-7 10.1016/j.neunet.2017.09.001 10.1109/SSCI44817.2019.9003098 10.1109/TNNLS.2016.2570124 10.1016/j.neunet.2005.04.006 10.1016/S0893-6080(02)00078-3 10.1016/j.neucom.2017.06.053 10.1016/j.neunet.2017.11.003 10.1016/j.neunet.2019.07.018 10.1007/BF01908075 10.1109/TNN.2002.804221 10.1111/j.1551-6708.1987.tb00862.x 10.1007/978-3-642-15825-4_21 10.1016/j.neunet.2019.08.033 10.1016/j.spl.2012.07.020 10.1109/TKDE.2018.2876857 10.1016/0893-6080(91)90056-B 10.1109/TSP.2007.896065 10.1109/TNNLS.2019.2919723 10.1109/TNN.2007.900234 10.1109/CcS49175.2020.9231474 10.1109/ACCESS.2019.2921832 10.1109/TIT.1982.1056489 10.1016/j.neunet.2017.11.012 10.1016/j.eswa.2021.115662 10.1016/j.neucom.2016.12.038 10.1016/j.eswa.2019.113069 10.1109/2.33 10.1007/BF00337288 10.1109/TNNLS.2014.2329097 10.1609/aaai.v34i04.6099 10.1016/j.neucom.2020.11.053 10.1146/annurev-statistics-031017-100325 |
| ContentType | Journal Article |
| Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022 |
| Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022 |
| DBID | 97E ESBDL RIA RIE AAYXX CITATION 7SC 7SP 7SR 8BQ 8FD JG9 JQ2 L7M L~C L~D ADTOC UNPAY DOA |
| DOI | 10.1109/ACCESS.2022.3186479 |
| DatabaseName | IEEE All-Society Periodicals Package (ASPP) 2005–Present IEEE Xplore Open Access Journals IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Electronic Library (IEL) CrossRef Computer and Information Systems Abstracts Electronics & Communications Abstracts Engineered Materials Abstracts METADEX Technology Research Database Materials Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional Unpaywall for CDI: Periodical Content Unpaywall DOAJ Directory of Open Access Journals |
| DatabaseTitle | CrossRef Materials Research Database Engineered Materials Abstracts Technology Research Database Computer and Information Systems Abstracts – Academic Electronics & Communications Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Advanced Technologies Database with Aerospace METADEX Computer and Information Systems Abstracts Professional |
| DatabaseTitleList | Materials Research Database |
| Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: RIE name: IEEE Electronic Library (IEL) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher – sequence: 3 dbid: UNPAY name: Unpaywall url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/ sourceTypes: Open Access Repository |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| EISSN | 2169-3536 |
| EndPage | 1 |
| ExternalDocumentID | oai_doaj_org_article_f3ecdf0784ac40d986304a878bf83223 10.1109/access.2022.3186479 10_1109_ACCESS_2022_3186479 9807317 |
| Genre | orig-research |
| GroupedDBID | 0R~ 4.4 5VS 6IK 97E AAJGR ABAZT ABVLG ACGFS ADBBV AGSQL ALMA_UNASSIGNED_HOLDINGS BCNDV BEFXN BFFAM BGNUA BKEBE BPEOZ EBS EJD ESBDL GROUPED_DOAJ IPLJI JAVBF KQ8 M43 M~E O9- OCL OK1 RIA RIE RNS AAYXX CITATION 7SC 7SP 7SR 8BQ 8FD JG9 JQ2 L7M L~C L~D ADTOC UNPAY |
| ID | FETCH-LOGICAL-c408t-2c828c4a51fae88ba0687bd1bc10fa468f2a50b8eba1d29e821f0f91b9924d253 |
| IEDL.DBID | UNPAY |
| ISSN | 2169-3536 |
| IngestDate | Fri Oct 03 12:53:28 EDT 2025 Sun Oct 26 04:11:12 EDT 2025 Mon Jun 30 04:58:38 EDT 2025 Wed Oct 01 04:58:12 EDT 2025 Thu Apr 24 22:53:57 EDT 2025 Wed Aug 27 02:23:57 EDT 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Language | English |
| License | https://creativecommons.org/licenses/by/4.0/legalcode cc-by |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c408t-2c828c4a51fae88ba0687bd1bc10fa468f2a50b8eba1d29e821f0f91b9924d253 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ORCID | 0000-0001-9186-6472 0000-0003-4853-1305 0000-0002-2886-1588 |
| OpenAccessLink | https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ielx7/6287639/9668973/09807317.pdf |
| PQID | 2682923627 |
| PQPubID | 4845423 |
| PageCount | 1 |
| ParticipantIDs | proquest_journals_2682923627 doaj_primary_oai_doaj_org_article_f3ecdf0784ac40d986304a878bf83223 crossref_primary_10_1109_ACCESS_2022_3186479 ieee_primary_9807317 crossref_citationtrail_10_1109_ACCESS_2022_3186479 unpaywall_primary_10_1109_access_2022_3186479 |
| ProviderPackageCode | CITATION AAYXX |
| PublicationCentury | 2000 |
| PublicationDate | 20220000 2022-00-00 20220101 2022-01-01 |
| PublicationDateYYYYMMDD | 2022-01-01 |
| PublicationDate_xml | – year: 2022 text: 20220000 |
| PublicationDecade | 2020 |
| PublicationPlace | Piscataway |
| PublicationPlace_xml | – name: Piscataway |
| PublicationTitle | IEEE access |
| PublicationTitleAbbrev | Access |
| PublicationYear | 2022 |
| Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| References | ref13 ref35 ref12 ref15 ref37 ref14 ref31 ref30 ref11 ref10 ref32 ref2 Dua (ref33) 2019 ref1 ref17 ref16 ref19 ref18 ref24 ref23 ref26 ref25 ref20 Demšar (ref36) 2006; 7 Fritzke (ref4); 7 ref22 ref21 ref28 ref27 ref29 ref8 ref7 ref9 ref3 Strehl (ref34) 2002; 3 ref6 ref5 |
| References_xml | – ident: ref31 doi: 10.1007/s10489-018-1238-7 – ident: ref19 doi: 10.1016/j.neunet.2017.09.001 – ident: ref12 doi: 10.1109/SSCI44817.2019.9003098 – ident: ref2 doi: 10.1109/TNNLS.2016.2570124 – ident: ref17 doi: 10.1016/j.neunet.2005.04.006 – ident: ref18 doi: 10.1016/S0893-6080(02)00078-3 – ident: ref27 doi: 10.1016/j.neucom.2017.06.053 – ident: ref10 doi: 10.1016/j.neunet.2017.11.003 – ident: ref29 doi: 10.1016/j.neunet.2019.07.018 – ident: ref35 doi: 10.1007/BF01908075 – ident: ref1 doi: 10.1109/TNN.2002.804221 – ident: ref6 doi: 10.1111/j.1551-6708.1987.tb00862.x – ident: ref9 doi: 10.1007/978-3-642-15825-4_21 – ident: ref26 doi: 10.1016/j.neunet.2019.08.033 – ident: ref30 doi: 10.1016/j.spl.2012.07.020 – ident: ref37 doi: 10.1109/TKDE.2018.2876857 – ident: ref7 doi: 10.1016/0893-6080(91)90056-B – ident: ref13 doi: 10.1109/TSP.2007.896065 – ident: ref25 doi: 10.1109/TNNLS.2019.2919723 – ident: ref8 doi: 10.1109/TNN.2007.900234 – ident: ref14 doi: 10.1109/CcS49175.2020.9231474 – ident: ref11 doi: 10.1109/ACCESS.2019.2921832 – ident: ref16 doi: 10.1109/TIT.1982.1056489 – ident: ref23 doi: 10.1016/j.neunet.2017.11.012 – volume: 3 start-page: 583 year: 2002 ident: ref34 article-title: Cluster ensembles—A knowledge reuse framework for combining multiple partitions publication-title: J. Mach. Learn. Res. – ident: ref21 doi: 10.1016/j.eswa.2021.115662 – ident: ref32 doi: 10.1016/j.neucom.2016.12.038 – ident: ref20 doi: 10.1016/j.eswa.2019.113069 – ident: ref5 doi: 10.1109/2.33 – year: 2019 ident: ref33 article-title: UCI machine learning repository – ident: ref3 doi: 10.1007/BF00337288 – volume: 7 start-page: 625 volume-title: Proc. Adv. Neural Inf. Process. Syst. ident: ref4 article-title: A growing neural gas network learns topologies – volume: 7 start-page: 1 year: 2006 ident: ref36 article-title: Statistical comparisons of classifiers over multiple data sets publication-title: J. Mach. Learn. Res. – ident: ref22 doi: 10.1109/TNNLS.2014.2329097 – ident: ref28 doi: 10.1609/aaai.v34i04.6099 – ident: ref24 doi: 10.1016/j.neucom.2020.11.053 – ident: ref15 doi: 10.1146/annurev-statistics-031017-100325 |
| SSID | ssj0000816957 |
| Score | 2.2902231 |
| Snippet | Adaptive Resonance Theory (ART) is considered as an effective approach for realizing continual learning thanks to its ability to handle the... |
| SourceID | doaj unpaywall proquest crossref ieee |
| SourceType | Open Website Open Access Repository Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 1 |
| SubjectTerms | Adaptive Resonance Theory Algorithms Big Data Cluster analysis Clustering Clustering algorithms Continual Learning Data mining Data points Hierarchical Clustering Information retrieval Kernel Machine learning Partitioning algorithms Resonance Similarity Structural hierarchy Subspace constraints Topological Clustering Topology Training data |
| SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3BTtwwELUqLrQHRKEVCxT5wLERsddx7OOSglZIcCmo3Cw7ttuVomUFu0KIn--MY1ZBleiFa2Jbjmc8M8_xvCHkWOPfNFazQqoIAAVsYwFhBBjDmo-FA_Q2TuWALq_k9EZc3Fa3g1JfeCespwfuF-4kjkPrIzgyYVtReq0kAHCrauUiKmPi-SyVHoCpZIMVk7qqM80QK_XJpGngiwAQcg44VUmBl7cGrigx9ucSK6-izc3VfGGfHm3XDRzP-TbZyhEjnfQz_Uw-hPkO-TTgEdwlzxNvF2i3KJ7GI4VGoH3SfXEKXsrT674UAgqENt0KyRGgI_01W_6hlv6YYYY59J7OMB05VUfp6M_ELLu6D7QBh-q6QO8iRTKrGbKY0kzM-vsLuTk_u26mRa6qUMD6qWXBWwBZrbAVizYo5WwpVe08cy0roxUgM26r0qngLPNcB8VZLKNmTgNU87wafyUb87t52CNUOu8gRIhaOC9Y62AwH4ITmL7rfMtHhL8ssGkz5ThWvuhMgh6lNr1UDErFZKmMyPd1p0XPuPF281OU3Lop0mWnB6BEJiuR-Z8Sjcguyn09iFZg-Vg9IocvemDy1n4wXCoO6iw5vC7WuvHPVG2qd_lqqvvvMdUD8hHH7E-BDskG6EL4BnHR0h2lLfAXpI0G5w priority: 102 providerName: Directory of Open Access Journals – databaseName: IEEE Electronic Library (IEL) dbid: RIE link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwELbaXoBDeRTEloJ84NhsY8dJ7OM2pVohlQut1FvkJ1oR7a5gI1T4851xvNEWEOIWJXbi5BuPZyaebwh5r_BvGqtZVskADgroxgzMCFCGNS-EAe-tiOWArj5V8xvx8ba83SOnYy6M9z5uPvNTPIz_8t3K9hgqO1MSBJLV-2S_ltWQqzXGU7CAhCrrRCzEcnU2axp4B3ABOQfPVFYCt2vtLD6Roz8VVXlgXz7ql2t990N33c5Sc_mUXG0HOeww-TrtN2Zqf_7G3_i_b_GMHCabk84GIXlO9vzyBXmyw0R4RH7NnF6j5qMYz0cSDk-HtP0M1zlHr4diCggpbboe6RWgI8UwLtX0YoE56tB7vsCE5lhfpaOfIzdt_83TBpZk03m6ChTpsBbIg0oTteuXl-Tm8sN1M89SXYbMilxuMm7BTbNClyxoL6XReSVr45ixLA9aAOpcl7mR3mjmuPKSs5AHxYwCZ8_xsnhFDparpX9NaGWcASMjKGGcYNbAzZz3RmACsHGWTwjfAtbaRFqOtTO6NjovuWoHlFtEuU0oT8jp2Gk9cHb8u_k5SsLYFAm34wlArU3ztw2Fty6APSU0fASnZFXkQstamoA6sZiQI0R6vEkCeUJOtnLVJuXwveWV5DAhKg6Xs1HW_hiqjhUzHwz1-O9PeUMeY6shMnRCDgBd_xZspY15FyfJPTE4EN4 priority: 102 providerName: IEEE |
| Title | Adaptive Resonance Theory-based Topological Clustering with a Divisive Hierarchical Structure Capable of Continual Learning |
| URI | https://ieeexplore.ieee.org/document/9807317 https://www.proquest.com/docview/2682923627 https://ieeexplore.ieee.org/ielx7/6287639/9668973/09807317.pdf https://doaj.org/article/f3ecdf0784ac40d986304a878bf83223 |
| UnpaywallVersion | publishedVersion |
| Volume | 10 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAFT databaseName: Open Access Digital Library customDbUrl: eissn: 2169-3536 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000816957 issn: 2169-3536 databaseCode: KQ8 dateStart: 20130101 isFulltext: true titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html providerName: Colorado Alliance of Research Libraries – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 2169-3536 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000816957 issn: 2169-3536 databaseCode: DOA dateStart: 20130101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 2169-3536 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000816957 issn: 2169-3536 databaseCode: M~E dateStart: 20130101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3db9MwELege0A88DUQhVH5gUfSxo7r2I9dYKqQmJBYxXiK7NhmEVFXsVbj45_nznGrDiQkeIsSO3Jy57vf2b7fEfJS424aK1kmVYAABWxjBjACjGHJC2EheitiOaB3p3K-EG_Pp-dpwS3mwnjv4-EzP8bLuJff-u5bOZEcydP0BPC50mUxybUC9WTleOXCbXIgp4DFB-Rgcfp-9gkryjGpsyLuTT5PxJoTE2sQQlDIOcSqSgo8wLXnjiJrfyqzcgNx3tksV-b7tem6Pedzcp_U22H3Z06-jDdrO25-_Mbo-P_f9YDcS7iUznpFekhu-eUjcnePrfCQ_Jw5s0LrSHHNH4k6PO1T-7Nj8IWOnvUFF1DstOo2SMEAHenHdn1BDX3dYh479J63mPQca7B09EPkr9189bQCt207Ty8DRcqsFrlSaaJ__fyYLE7enFXzLNVuyBqRq3XGGwjlGmGmLBivlDW5VKV1zDYsD0aAZnAzza3y1jDHtVechTxoZjUEhI5PiydksLxc-qeESussAJGghXWCNRZe5ry3ApOErWv4kPCtCOsmEZtjfY2ujgFOrutZVYE21yj3Osl9SF7tOq16Xo-_Nz9G3dg1RVLueAPkWKc5XofCNy4A5hIGfoLTSha5MKpUNqDdLIbkEGW_e0kS9JAcbTWtTgbkquZScZg0ksPjbKd9fwy11-gbQ332j-2PyAAk7V8AtlrbUVyTGMU0yFGaTL8A6c4g4g |
| linkProvider | Unpaywall |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3fb9MwELbGeBg88GsgCgP8wOPSxY6T2I8lMBVY90In7S2yY3uqiNpqa4SAf547x406QIi3KIkTJ9_5fHf2fUfIW4WraaxkSSE9OCigGxMwI0AZljwTBry3LJQDmp0X0wvx6TK_3CPHQy6Mcy5sPnNjPAxr-XbVdBgqO1ESBJKVd8jdXAiR99laQ0QFS0iovIzUQixVJ5Oqgq8AJ5Bz8E1lIXDD1s70E1j6Y1mVWxbmQbdc6-_fdNvuTDanD8ls281-j8nXcbcx4-bHbwyO__sdj8iDaHXSSS8mj8meWz4h93e4CA_Jz4nVa9R9FCP6SMPhaJ-4n-BMZ-m8L6eAoNKq7ZBgARpSDORSTd8vMEsdWk8XmNIcKqy09Etgp-2uHa1gUjatoytPkRBrgUyoNJK7Xj0lF6cf5tU0iZUZkkakcpPwBhy1Ruicee2kNDotZGksMw1LvRaAO9d5aqQzmlmunOTMp14xo8DdszzPnpH95WrpnhNaGGvAzPBKGCtYY-Bh1jkjMAXY2IaPCN8CVjeRthyrZ7R1cF9SVfco14hyHVEekeOh0bpn7fj37e9QEoZbkXI7nADU6jiCa5-5xnqwqISGn2CVLLJUaFlK41ErZiNyiEgPD4kgj8jRVq7qqB5ual5IDkOi4HA5GWTtj67qUDPzVldf_P0tb8jBdD47q88-nn9-Se5hiz5OdET2AWn3CiynjXkdBswvkg4UKw |
| linkToUnpaywall | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lj9MwELage0AceC2ILgvygSNpY8dx7GM3sKqQWCGxFcspsmMbIqJuBa2Wx59nxnGrLkhIcIsSO3Lyjedhe74h5LnG3TRWsUyqAAEK6MYM3AhQhhUvhIXorYjlgN6cyflCvL4oL9KCW8yF8d7Hw2d-gpdxL7_z_bdqKjmSp-kp-OdKV8U01wrEk1WTlQs3yYEswRcfkYPF2dvZB6wox6TOirg3-SQRa05NrEEIQSHnEKsqKfAA1545iqz9qczKNY_z1ma5Mt-vTN_vGZ_Tu6TZDns4c_J5slnbSfvjN0bH__-ue-RO8kvpbBCk--SGXz4gt_fYCg_Jz5kzK9SOFNf8kajD0yG1PzsBW-jo-VBwAWGndb9BCgboSN9360_U0Jcd5rFD73mHSc-xBktP30X-2s0XT2sw27b39DJQpMzqkCuVJvrXjw_J4vTVeT3PUu2GrBW5Wme8hVCuFaZkwXilrMmlqqxjtmV5MAIkg5syt8pbwxzXXnEW8qCZ1RAQOl4Wj8hoebn0jwmV1llwRIIW1gnWWniZ894KTBK2ruVjwrcQNm0iNsf6Gn0TA5xcN7O6BmluEPcm4T4mL3adVgOvx9-bn6Bs7JoiKXe8ATg2aY43ofCtC-BzCQM_wWkli1wYVSkbUG8WY3KI2O9ekoAek-OtpDVJgXxtuFQcJo3k8DjbSd8fQx0k-tpQj_6x_TEZAdL-KfhWa_ssTaBfcIke7A |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Adaptive+Resonance+Theory-based+Topological+Clustering+with+a+Divisive+Hierarchical+Structure+Capable+of+Continual+Learning&rft.jtitle=IEEE+access&rft.au=Masuyama%2C+Naoki&rft.au=Amako%2C+Narito&rft.au=Yamada%2C+Yuna&rft.au=Nojima%2C+Yusuke&rft.date=2022&rft.pub=IEEE&rft.eissn=2169-3536&rft.spage=1&rft.epage=1&rft_id=info:doi/10.1109%2FACCESS.2022.3186479&rft.externalDocID=9807317 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2169-3536&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2169-3536&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2169-3536&client=summon |