Adaptive Resonance Theory-based Topological Clustering with a Divisive Hierarchical Structure Capable of Continual Learning
Adaptive Resonance Theory (ART) is considered as an effective approach for realizing continual learning thanks to its ability to handle the plasticity-stability dilemma. In general, however, the clustering performance of ART-based algorithms strongly depends on the specification of a similarity thre...
Saved in:
| Published in | IEEE access Vol. 10; p. 1 |
|---|---|
| Main Authors | , , , , |
| Format | Journal Article |
| Language | English |
| Published |
Piscataway
IEEE
2022
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Subjects | |
| Online Access | Get full text |
| ISSN | 2169-3536 2169-3536 |
| DOI | 10.1109/ACCESS.2022.3186479 |
Cover
| Summary: | Adaptive Resonance Theory (ART) is considered as an effective approach for realizing continual learning thanks to its ability to handle the plasticity-stability dilemma. In general, however, the clustering performance of ART-based algorithms strongly depends on the specification of a similarity threshold, i.e., a vigilance parameter, which is data-dependent and specified by hand. This paper proposes an ART-based topological clustering algorithm with a mechanism that automatically estimates a similarity threshold from the distribution of data points. In addition, for improving information extraction performance, a divisive hierarchical clustering algorithm capable of continual learning is proposed by introducing a hierarchical structure to the proposed algorithm. Experimental results demonstrate that the proposed algorithm has high clustering performance comparable with recently-proposed state-of-the-art hierarchical clustering algorithms. |
|---|---|
| Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ISSN: | 2169-3536 2169-3536 |
| DOI: | 10.1109/ACCESS.2022.3186479 |