Feature Selection-Based Hierarchical Deep Network for Image Classification

In this paper, a novel hierarchical deep network is proposed to combine the deep convolutional neural network and the feature selection-based tree classifier efficiently for image classification. First, the concept ontology is built for organizing large-scale image classes hierarchically in a coarse...

Full description

Saved in:
Bibliographic Details
Published inIEEE access Vol. 8; pp. 15436 - 15447
Main Authors He, Guiqing, Ji, Jiaqi, Zhang, Haixi, Xu, Yuelei, Fan, Jianping
Format Journal Article
LanguageEnglish
Published Piscataway IEEE 2020
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text
ISSN2169-3536
2169-3536
DOI10.1109/ACCESS.2020.2966651

Cover

More Information
Summary:In this paper, a novel hierarchical deep network is proposed to combine the deep convolutional neural network and the feature selection-based tree classifier efficiently for image classification. First, the concept ontology is built for organizing large-scale image classes hierarchically in a coarse-to-fine fashion. Second, a novel selective orthogonal algorithm is proposed to make sure deep features extracted for each level classifiers more in line with the requirements of different classification tasks. Also, the role of useful feature components in multi-level deep features are improved. The experimental results on three datasets show that adding a feature selection module in a hierarchical deep network can perform better performance in large-scale image classification.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:2169-3536
2169-3536
DOI:10.1109/ACCESS.2020.2966651