Theoretical Analysis of REM-Based Handover Algorithm for Heterogeneous Networks

Handover has been a widely studied topic since the beginning of the mobile communications era, but with the advent of another generation, it is worth seeing it with fresh eyes. Data traffic is expected to keep growing as new use cases will coexist under the same umbrella, e.g., vehicle-to-vehicle or...

Full description

Saved in:
Bibliographic Details
Published inIEEE access Vol. 7; pp. 96719 - 96731
Main Authors Suarez-Rodriguez, Cristo, He, Ying, Dutkiewicz, Eryk
Format Journal Article
LanguageEnglish
Published Piscataway IEEE 2019
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text
ISSN2169-3536
2169-3536
DOI10.1109/ACCESS.2019.2929525

Cover

More Information
Summary:Handover has been a widely studied topic since the beginning of the mobile communications era, but with the advent of another generation, it is worth seeing it with fresh eyes. Data traffic is expected to keep growing as new use cases will coexist under the same umbrella, e.g., vehicle-to-vehicle or massive-machine-type communications. Heterogeneous networks will give way to multi-tiered networks, and mobility management will become challenging once again. Under the current approach, based uniquely on measurements, the number of handovers will soar, so will the signaling. We propose a handover algorithm that employs multidimensional radio-cognitive databases, namely radio environment maps, to predict the best network connection according to the user's trajectory. Radio environment maps have been extensively used in spectrum-sharing scenarios, and recently, some advances in other areas have been supported by them, such as coverage deployment or interference management. We also present a geometric model that translates the 3GPP specifications into geometry and introduce a new framework that can give useful insights into our proposed technique's performance. We validate our framework through Monte Carlo simulations, and the results show that a drastic reduction of at least 10% in the ping-pong handovers can be achieved, thus reducing the signaling needed.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:2169-3536
2169-3536
DOI:10.1109/ACCESS.2019.2929525