Enhanced Iris Recognition Method by Generative Adversarial Network-Based Image Reconstruction

Iris recognition is one of the non-contact biometric identification methods that are hygienic and highly accurate. Iris recognition involves using iris images obtained by a near-infrared (NIR) camera or a visible light camera. A clear image of iris can be obtained when an NIR camera is used, but it...

Full description

Saved in:
Bibliographic Details
Published inIEEE access Vol. 9; pp. 10120 - 10135
Main Authors Lee, Min Beom, Kang, Jin Kyu, Yoon, Hyo Sik, Park, Kang Ryoung
Format Journal Article
LanguageEnglish
Published Piscataway IEEE 2021
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text
ISSN2169-3536
2169-3536
DOI10.1109/ACCESS.2021.3050788

Cover

More Information
Summary:Iris recognition is one of the non-contact biometric identification methods that are hygienic and highly accurate. Iris recognition involves using iris images obtained by a near-infrared (NIR) camera or a visible light camera. A clear image of iris can be obtained when an NIR camera is used, but it requires an NIR illuminator in addition to the NIR camera. Iris recognition can be performed with a built-in camera device when a visible light camera is used, which also has the advantage of obtaining a three-channel image containing the color information. Accordingly, studies are being conducted on iris recognition by obtaining iris images from the face images taken by a high-resolution visible light camera in smartphones. However, when iris images have unconstrained conditions or are obtained without the cooperation of the subjects, the quality of iris images are reduced by noises such as optical and motion blur, off-angle view, specular reflection (SR), and other artifacts, thus ultimately deteriorating the recognition performance. Therefore, in this study, a method has been proposed for enhancing the quality of iris images by blurring the iris region and deep-learning-based deblurring. In addition, we propose the method for improving the recognition performance by integrating the recognition score in periocular regions and support vector machine (SVM). The method proposed in this study, which was experimented with noisy iris challenge evaluation-part II training database and MICHE database, exhibited an improved performance compared to the state-of-the-art methods.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:2169-3536
2169-3536
DOI:10.1109/ACCESS.2021.3050788