Cholesterol Metabolism in the Brain and Its Association with Parkinson’s Disease

Parkinson's disease (PD) is the second most progressive neurodegenerative disorder of the aging population after Alzheimer's disease (AD). Defects in the lysosomal systems and mitochondria have been suspected to cause the pathogenesis of PD. Nevertheless, the pathogenesis of PD remains obs...

Full description

Saved in:
Bibliographic Details
Published inExperimental neurobiology Vol. 28; no. 5; pp. 554 - 567
Main Authors Jin, Uram, Park, Soo Jin, Park, Sang Myun
Format Journal Article
LanguageEnglish
Published The Korean Society for Brain and Neural Sciences 01.10.2019
한국뇌신경과학회
Subjects
Online AccessGet full text
ISSN1226-2560
2093-8144
DOI10.5607/en.2019.28.5.554

Cover

More Information
Summary:Parkinson's disease (PD) is the second most progressive neurodegenerative disorder of the aging population after Alzheimer's disease (AD). Defects in the lysosomal systems and mitochondria have been suspected to cause the pathogenesis of PD. Nevertheless, the pathogenesis of PD remains obscure. Abnormal cholesterol metabolism is linked to numerous disorders, including atherosclerosis. The brain contains the highest level of cholesterol in the body and abnormal cholesterol metabolism links also many neurodegenerative disorders such as AD, PD, Huntington's disease (HD), and amyotrophic lateral sclerosis (ALS). The blood brain barrier effectively prevents uptake of lipoprotein-bound cholesterol from blood circulation. Accordingly, cholesterol level in the brain is independent from that in peripheral tissues. Because cholesterol metabolism in both peripheral tissue and the brain are quite different, cholesterol metabolism associated with neurodegeneration should be examined separately from that in peripheral tissues. Here, we review and compare cholesterol metabolism in the brain and peripheral tissues. Furthermore, the relationship between alterations in cholesterol metabolism and PD pathogenesis is reviewed.Parkinson's disease (PD) is the second most progressive neurodegenerative disorder of the aging population after Alzheimer's disease (AD). Defects in the lysosomal systems and mitochondria have been suspected to cause the pathogenesis of PD. Nevertheless, the pathogenesis of PD remains obscure. Abnormal cholesterol metabolism is linked to numerous disorders, including atherosclerosis. The brain contains the highest level of cholesterol in the body and abnormal cholesterol metabolism links also many neurodegenerative disorders such as AD, PD, Huntington's disease (HD), and amyotrophic lateral sclerosis (ALS). The blood brain barrier effectively prevents uptake of lipoprotein-bound cholesterol from blood circulation. Accordingly, cholesterol level in the brain is independent from that in peripheral tissues. Because cholesterol metabolism in both peripheral tissue and the brain are quite different, cholesterol metabolism associated with neurodegeneration should be examined separately from that in peripheral tissues. Here, we review and compare cholesterol metabolism in the brain and peripheral tissues. Furthermore, the relationship between alterations in cholesterol metabolism and PD pathogenesis is reviewed.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
ObjectType-Review-3
content type line 23
These authors contributed equally to this work.
ISSN:1226-2560
2093-8144
DOI:10.5607/en.2019.28.5.554