Machine Learning CT-Based Automatic Nodal Segmentation and PET Semi-Quantification of Intraoperative 68Ga-PSMA-11 PET/CT Images in High-Risk Prostate Cancer: A Pilot Study
High-resolution intraoperative PET/CT specimen imaging, coupled with prostate-specific membrane antigen (PSMA) molecular targeting, holds great potential for the rapid ex vivo identification of disease localizations in high-risk prostate cancer patients undergoing surgery. However, the accurate anal...
Saved in:
| Published in | Diagnostics (Basel) Vol. 13; no. 18; p. 3013 |
|---|---|
| Main Authors | , , , , , , , |
| Format | Journal Article |
| Language | English |
| Published |
Basel
MDPI AG
21.09.2023
MDPI |
| Subjects | |
| Online Access | Get full text |
| ISSN | 2075-4418 2075-4418 |
| DOI | 10.3390/diagnostics13183013 |
Cover
| Summary: | High-resolution intraoperative PET/CT specimen imaging, coupled with prostate-specific membrane antigen (PSMA) molecular targeting, holds great potential for the rapid ex vivo identification of disease localizations in high-risk prostate cancer patients undergoing surgery. However, the accurate analysis of radiotracer uptake would require time-consuming manual volumetric segmentation of 3D images. The aim of this study was to test the feasibility of using machine learning to perform automatic nodal segmentation of intraoperative 68Ga-PSMA-11 PET/CT specimen images. Six (n = 6) lymph-nodal specimens were imaged in the operating room after an e.v. injection of 2.1 MBq/kg of 68Ga-PSMA-11. A machine learning-based approach for automatic lymph-nodal segmentation was developed using only open-source Python libraries (Scikit-learn, SciPy, Scikit-image). The implementation of a k-means clustering algorithm (n = 3 clusters) allowed to identify lymph-nodal structures by leveraging differences in tissue density. Refinement of the segmentation masks was performed using morphological operations and 2D/3D-features filtering. Compared to manual segmentation (ITK-SNAP v4.0.1), the automatic segmentation model showed promising results in terms of weighted average precision (97–99%), recall (68–81%), Dice coefficient (80–88%) and Jaccard index (67–79%). Finally, the ML-based segmentation masks allowed to automatically compute semi-quantitative PET metrics (i.e., SUVmax), thus holding promise for facilitating the semi-quantitative analysis of PET/CT images in the operating room. |
|---|---|
| Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
| ISSN: | 2075-4418 2075-4418 |
| DOI: | 10.3390/diagnostics13183013 |