First order nonadiabatic coupling matrix elements between excited states: Implementation and application at the TD-DFT and pp-TDA levels
The recently proposed rigorous yet abstract theory of first order nonadiabatic coupling matrix elements (fo-NACME) between electronically excited states [Z. Li and W. Liu, J. Chem. Phys. 141, 014110 (2014)] is specified in detail for two widely used models: The time-dependent density functional theo...
Saved in:
| Published in | The Journal of chemical physics Vol. 141; no. 24; p. 244105 |
|---|---|
| Main Authors | , , |
| Format | Journal Article |
| Language | English |
| Published |
United States
American Institute of Physics
28.12.2014
|
| Subjects | |
| Online Access | Get full text |
| ISSN | 0021-9606 1089-7690 1089-7690 |
| DOI | 10.1063/1.4903986 |
Cover
| Summary: | The recently proposed rigorous yet abstract theory of first order nonadiabatic coupling matrix elements (fo-NACME) between electronically excited states [Z. Li and W. Liu, J. Chem. Phys. 141, 014110 (2014)] is specified in detail for two widely used models: The time-dependent density functional theory and the particle-particle Tamm-Dancoff approximation. The actual implementation employs a Lagrangian formalism with atomic-orbital based direct algorithms, which makes the computation of fo-NACME very similar to that of excited-state gradients. Although the methods have great potential in investigating internal conversions and nonadiabatic dynamics between excited states of large molecules, only prototypical systems as a first pilot application are considered here to illustrate some conceptual aspects. |
|---|---|
| Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
| ISSN: | 0021-9606 1089-7690 1089-7690 |
| DOI: | 10.1063/1.4903986 |