Changes of Neuronal Activities after Gut Electrical Stimulation with Different Parameters and Locations in Lateral Hypothalamus Area of Obese Rats

This study tested the effects of the gastrointestinal pulse train electrical stimulation with different parameters and at different locations on the neuronal activities of the lateral hypothalamus area(LHA) in obese rats in order to find the optimal stimulation parameter and location. Eight gastric...

Full description

Saved in:
Bibliographic Details
Published inJournal of Huazhong University of Science and Technology. Medical sciences Vol. 34; no. 4; pp. 510 - 515
Main Author 严云 向雪莲 钱伟 许军英 侯晓华
Format Journal Article
LanguageEnglish
Published Heidelberg Huazhong University of Science and Technology 01.08.2014
Department of Gastroenterology, Union Hospital Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
Subjects
Online AccessGet full text
ISSN1672-0733
1993-1352
DOI10.1007/s11596-014-1307-z

Cover

More Information
Summary:This study tested the effects of the gastrointestinal pulse train electrical stimulation with different parameters and at different locations on the neuronal activities of the lateral hypothalamus area(LHA) in obese rats in order to find the optimal stimulation parameter and location. Eight gastric electrical stimulations(GES) with different parameters were performed and the neuronal activities of gastric-distension responsive(GD-R) neurons in LHA were observed. The effects of stimulations with 8 parameters were compared to find the optimal parameter. Then the optimal parameter was used to perform electrical stimulation at duodenum and ileum, and the effects of the duodenal and ileac stimulation on the GD-R neurons in LHA were compared with the gastric stimulation of optimal parameter. The results showed that GES with the lowest energy parameter(0.3 ms, 3 mA, 20 Hz, 2 s on, 3 s off) activated the least neurons. The effects of GES with other parameters whose pulse width was 0.3 ms were not significantly different from those of the lowest energy parameter. Most gastric stimulations whose pulse width was 3 ms activated more LHA neurons than the smallest energy parameter stimulation, and the effects of those 3 ms gastric stimulations were similar. Accordingly, the lowest energy parameter was recognized as the optimal parameter. The effects of stimulations with the optimal parameter at stomach, duodenum and ileum on the LHA neuronal activities were not different. Collectively, gastrointestinal electrical stimulation(GIES) with relatively large pulse width might have stronger effects to the neuronal activities of GD-R neurons in LHA of obese rats. The effects of the GIES at different locations(stomach, duodenum and ileum) on those neurons are similar, and GES is preferential because of its easy clinical performance and safety.
Bibliography:lateral hypothalamus; gastric distension; diet-induced obesity rats; food intake control
This study tested the effects of the gastrointestinal pulse train electrical stimulation with different parameters and at different locations on the neuronal activities of the lateral hypothalamus area(LHA) in obese rats in order to find the optimal stimulation parameter and location. Eight gastric electrical stimulations(GES) with different parameters were performed and the neuronal activities of gastric-distension responsive(GD-R) neurons in LHA were observed. The effects of stimulations with 8 parameters were compared to find the optimal parameter. Then the optimal parameter was used to perform electrical stimulation at duodenum and ileum, and the effects of the duodenal and ileac stimulation on the GD-R neurons in LHA were compared with the gastric stimulation of optimal parameter. The results showed that GES with the lowest energy parameter(0.3 ms, 3 mA, 20 Hz, 2 s on, 3 s off) activated the least neurons. The effects of GES with other parameters whose pulse width was 0.3 ms were not significantly different from those of the lowest energy parameter. Most gastric stimulations whose pulse width was 3 ms activated more LHA neurons than the smallest energy parameter stimulation, and the effects of those 3 ms gastric stimulations were similar. Accordingly, the lowest energy parameter was recognized as the optimal parameter. The effects of stimulations with the optimal parameter at stomach, duodenum and ileum on the LHA neuronal activities were not different. Collectively, gastrointestinal electrical stimulation(GIES) with relatively large pulse width might have stronger effects to the neuronal activities of GD-R neurons in LHA of obese rats. The effects of the GIES at different locations(stomach, duodenum and ileum) on those neurons are similar, and GES is preferential because of its easy clinical performance and safety.
42-1679/R
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:1672-0733
1993-1352
DOI:10.1007/s11596-014-1307-z