A stochastic epidemic model of COVID-19 disease

To model the evolution of diseases with extended latency periods and the presence of asymptomatic patients like COVID-19, we define a simple discrete time stochastic SIR-type epidemic model. We include both latent periods as well as the presence of quarantine areas, to capture the evolutionary dynam...

Full description

Saved in:
Bibliographic Details
Published inAIMS mathematics Vol. 5; no. 6; pp. 7661 - 7677
Main Authors Bardina, Xavier, Ferrante, Marco, Rovira, Carles
Format Journal Article
LanguageEnglish
Published AIMS Press 01.11.2020
Subjects
Online AccessGet full text
ISSN2473-6988
2473-6988
DOI10.3934/math.2020490

Cover

Abstract To model the evolution of diseases with extended latency periods and the presence of asymptomatic patients like COVID-19, we define a simple discrete time stochastic SIR-type epidemic model. We include both latent periods as well as the presence of quarantine areas, to capture the evolutionary dynamics of such diseases.
AbstractList To model the evolution of diseases with extended latency periods and the presence of asymptomatic patients like COVID-19, we define a simple discrete time stochastic SIR-type epidemic model. We include both latent periods as well as the presence of quarantine areas, to capture the evolutionary dynamics of such diseases.
Author Rovira, Carles
Bardina, Xavier
Ferrante, Marco
Author_xml – sequence: 1
  givenname: Xavier
  surname: Bardina
  fullname: Bardina, Xavier
– sequence: 2
  givenname: Marco
  surname: Ferrante
  fullname: Ferrante, Marco
– sequence: 3
  givenname: Carles
  surname: Rovira
  fullname: Rovira, Carles
BookMark eNptkN1KAzEQhYNUsNbe-QD7AG7N326Sy1L_CoXeqLdhmkxsym5TNnvj27u1RUS8GOYwnPlmONdktE97JOSW0ZkwQt630G9nnHIqDb0gYy6VKGuj9eiXviLTnHeUUs645EqOyf28yH1yW8h9dAUeosd2EG3y2BQpFIv1-_KhZKbwMSNkvCGXAZqM03OfkLenx9fFS7laPy8X81XpJK370mkIargIWmMwCChErSqvHPMhCINCO-WQc40MKx48KDQS6qHkRhqmxIQsT1yfYGcPXWyh-7QJov0epO7DQje83KCVBoKsAtO8llIhM1qir2m9cUClo9XAujuxXJdy7jD88Bi1x-zsMTt7zm6w8z92F3voY9r3HcTm_6UvN2lynQ
CitedBy_id crossref_primary_10_1007_s10198_022_01491_5
crossref_primary_10_1007_s10729_021_09561_5
crossref_primary_10_1007_s00477_021_02065_2
crossref_primary_10_3934_math_20231181
crossref_primary_10_3390_axioms10010018
crossref_primary_10_3934_mbe_2021095
crossref_primary_10_1007_s12190_021_01658_y
crossref_primary_10_1016_j_chaos_2020_110381
crossref_primary_10_1371_journal_pone_0250029
crossref_primary_10_3390_math10091583
crossref_primary_10_1016_j_ejor_2021_12_037
crossref_primary_10_1016_j_ejor_2021_11_012
crossref_primary_10_3390_ijerph19063707
crossref_primary_10_1016_j_rinp_2021_104311
Cites_doi 10.1007/s11538-009-9487-6
10.1016/j.mbs.2006.09.018
ContentType Journal Article
CorporateAuthor 2 Dipartimento di Matematica “Tullio Levi-Civita”, Università degli Studi di Padova, Via Trieste 63, 35121-Padova, Italy
3 Departament de Matemàtiques i Informàtica, Universitat de Barcelona, Gran Via 585, 08007-Barcelona
1 Departament de Matemàtiques, Universitat Autonòma de Barcelona, 08193-Bellaterra
CorporateAuthor_xml – name: 2 Dipartimento di Matematica “Tullio Levi-Civita”, Università degli Studi di Padova, Via Trieste 63, 35121-Padova, Italy
– name: 1 Departament de Matemàtiques, Universitat Autonòma de Barcelona, 08193-Bellaterra
– name: 3 Departament de Matemàtiques i Informàtica, Universitat de Barcelona, Gran Via 585, 08007-Barcelona
DBID AAYXX
CITATION
DOA
DOI 10.3934/math.2020490
DatabaseName CrossRef
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
DatabaseTitleList
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
DeliveryMethod fulltext_linktorsrc
Discipline Mathematics
EISSN 2473-6988
EndPage 7677
ExternalDocumentID oai_doaj_org_article_49af45f1826447e1984ed606bca04c05
10_3934_math_2020490
GroupedDBID AAYXX
ADBBV
ALMA_UNASSIGNED_HOLDINGS
AMVHM
BCNDV
CITATION
EBS
FRJ
GROUPED_DOAJ
IAO
ITC
M~E
OK1
RAN
ID FETCH-LOGICAL-c406t-c8af7698a88ef9eae33675d7c1dff39e38c7ce228e1e52fda7e94a694a4b49173
IEDL.DBID DOA
ISSN 2473-6988
IngestDate Wed Aug 27 01:29:30 EDT 2025
Thu Apr 24 23:03:12 EDT 2025
Tue Jul 01 03:56:46 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 6
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c406t-c8af7698a88ef9eae33675d7c1dff39e38c7ce228e1e52fda7e94a694a4b49173
OpenAccessLink https://doaj.org/article/49af45f1826447e1984ed606bca04c05
PageCount 17
ParticipantIDs doaj_primary_oai_doaj_org_article_49af45f1826447e1984ed606bca04c05
crossref_primary_10_3934_math_2020490
crossref_citationtrail_10_3934_math_2020490
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20201101
PublicationDateYYYYMMDD 2020-11-01
PublicationDate_xml – month: 11
  year: 2020
  text: 20201101
  day: 01
PublicationDecade 2020
PublicationTitle AIMS mathematics
PublicationYear 2020
Publisher AIMS Press
Publisher_xml – name: AIMS Press
References 11
13
4
H. C. Tuckwell, R. J. Williams (9)
G. Huang, Y. Takeuchi, W. Ma (8)
10
References_xml – ident: 8
  article-title: t al., Global stability for delay SIR and SEIR epidemic models with nonlinear incidence rate</i
  publication-title: B. Math. Biol.
  doi: 10.1007/s11538-009-9487-6
– ident: 4
  article-title: D. J. Daley, J. Gani, Epidemic
– ident: 9
  article-title: i>Some properties of a simple stochastic epidemic model of SIR typ
  publication-title: Math. Biosci.
  doi: 10.1016/j.mbs.2006.09.018
– ident: 10
  article-title: M. K. Oli, M. Venkataraman, P. A. Klein, et al., Population dynamics of infectious
– ident: 13
  article-title: J. T. Wu, K. Leung and G. M. Leung, Nowcasting and forecasting the potential domestic and international spread of the 2019-nCoV outbreak originating in Wuhan,
– ident: 11
  article-title: C. Mode, C. Sleeman, Stochastic processes in
SSID ssj0002124274
Score 2.2259672
Snippet To model the evolution of diseases with extended latency periods and the presence of asymptomatic patients like COVID-19, we define a simple discrete time...
SourceID doaj
crossref
SourceType Open Website
Enrichment Source
Index Database
StartPage 7661
SubjectTerms covid-19
reproduction number
sir model
Title A stochastic epidemic model of COVID-19 disease
URI https://doaj.org/article/49af45f1826447e1984ed606bca04c05
Volume 5
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 2473-6988
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0002124274
  issn: 2473-6988
  databaseCode: DOA
  dateStart: 20160101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 2473-6988
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0002124274
  issn: 2473-6988
  databaseCode: M~E
  dateStart: 20160101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV09T8MwELVQJxgQn6J8yQNMyGoTXz48lkJVkAoLRd0i-3IWA2oRlP_POQ5VGRALQ5boZDnPke-dzn5PiAuEnDjROGVTZxXkfadKp2tFXOAmHhNMGv-UyUM-nsL9LJutWX2FM2FRHjgC1wNjPWQ-0GCAIgwBVDPrdmj7gFG9lNPYWjEV9mDekIHrrXjSXRsNPeZ_ofeQhk7Xjxy0JtXf5JTRjthuyaAcxEnsig2a74mtyUpJ9WNf9AaS6Rm-2KCnLCn6uaJsDGzkwsvh4_PdjUqMbDstB2I6un0ajlVrcqCQc-lSYWl9kZvSliV5Q5a0Zg5fF5jU3mtDusQCKU1LSihLfW0LMmBzfsAB11r6UHTmizkdCekYdWZrmfYuAZ9aY9Br8gB9Iod51hVX359dYasAHowoXiuuBAJIVQCpakHqistV9FtUvvgl7joguIoJetXNC17Fql3F6q9VPP6PQU7EZphTvCl4KjrL9086Y8qwdOfN3_EFfua9Bw
linkProvider Directory of Open Access Journals
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+stochastic+epidemic+model+of+COVID-19+disease&rft.jtitle=AIMS+mathematics&rft.au=Bardina%2C+Xavier&rft.au=Ferrante%2C+Marco&rft.au=Rovira%2C+Carles&rft.date=2020-11-01&rft.issn=2473-6988&rft.eissn=2473-6988&rft.volume=5&rft.issue=6&rft.spage=7661&rft.epage=7677&rft_id=info:doi/10.3934%2Fmath.2020490&rft.externalDBID=n%2Fa&rft.externalDocID=10_3934_math_2020490
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2473-6988&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2473-6988&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2473-6988&client=summon