A stochastic epidemic model of COVID-19 disease
To model the evolution of diseases with extended latency periods and the presence of asymptomatic patients like COVID-19, we define a simple discrete time stochastic SIR-type epidemic model. We include both latent periods as well as the presence of quarantine areas, to capture the evolutionary dynam...
Saved in:
Published in | AIMS mathematics Vol. 5; no. 6; pp. 7661 - 7677 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
AIMS Press
01.11.2020
|
Subjects | |
Online Access | Get full text |
ISSN | 2473-6988 2473-6988 |
DOI | 10.3934/math.2020490 |
Cover
Abstract | To model the evolution of diseases with extended latency periods and the presence of asymptomatic patients like COVID-19, we define a simple discrete time stochastic SIR-type epidemic model. We include both latent periods as well as the presence of quarantine areas, to capture the evolutionary dynamics of such diseases. |
---|---|
AbstractList | To model the evolution of diseases with extended latency periods and the presence of asymptomatic patients like COVID-19, we define a simple discrete time stochastic SIR-type epidemic model. We include both latent periods as well as the presence of quarantine areas, to capture the evolutionary dynamics of such diseases. |
Author | Rovira, Carles Bardina, Xavier Ferrante, Marco |
Author_xml | – sequence: 1 givenname: Xavier surname: Bardina fullname: Bardina, Xavier – sequence: 2 givenname: Marco surname: Ferrante fullname: Ferrante, Marco – sequence: 3 givenname: Carles surname: Rovira fullname: Rovira, Carles |
BookMark | eNptkN1KAzEQhYNUsNbe-QD7AG7N326Sy1L_CoXeqLdhmkxsym5TNnvj27u1RUS8GOYwnPlmONdktE97JOSW0ZkwQt630G9nnHIqDb0gYy6VKGuj9eiXviLTnHeUUs645EqOyf28yH1yW8h9dAUeosd2EG3y2BQpFIv1-_KhZKbwMSNkvCGXAZqM03OfkLenx9fFS7laPy8X81XpJK370mkIargIWmMwCChErSqvHPMhCINCO-WQc40MKx48KDQS6qHkRhqmxIQsT1yfYGcPXWyh-7QJov0epO7DQje83KCVBoKsAtO8llIhM1qir2m9cUClo9XAujuxXJdy7jD88Bi1x-zsMTt7zm6w8z92F3voY9r3HcTm_6UvN2lynQ |
CitedBy_id | crossref_primary_10_1007_s10198_022_01491_5 crossref_primary_10_1007_s10729_021_09561_5 crossref_primary_10_1007_s00477_021_02065_2 crossref_primary_10_3934_math_20231181 crossref_primary_10_3390_axioms10010018 crossref_primary_10_3934_mbe_2021095 crossref_primary_10_1007_s12190_021_01658_y crossref_primary_10_1016_j_chaos_2020_110381 crossref_primary_10_1371_journal_pone_0250029 crossref_primary_10_3390_math10091583 crossref_primary_10_1016_j_ejor_2021_12_037 crossref_primary_10_1016_j_ejor_2021_11_012 crossref_primary_10_3390_ijerph19063707 crossref_primary_10_1016_j_rinp_2021_104311 |
Cites_doi | 10.1007/s11538-009-9487-6 10.1016/j.mbs.2006.09.018 |
ContentType | Journal Article |
CorporateAuthor | 2 Dipartimento di Matematica “Tullio Levi-Civita”, Università degli Studi di Padova, Via Trieste 63, 35121-Padova, Italy 3 Departament de Matemàtiques i Informàtica, Universitat de Barcelona, Gran Via 585, 08007-Barcelona 1 Departament de Matemàtiques, Universitat Autonòma de Barcelona, 08193-Bellaterra |
CorporateAuthor_xml | – name: 2 Dipartimento di Matematica “Tullio Levi-Civita”, Università degli Studi di Padova, Via Trieste 63, 35121-Padova, Italy – name: 1 Departament de Matemàtiques, Universitat Autonòma de Barcelona, 08193-Bellaterra – name: 3 Departament de Matemàtiques i Informàtica, Universitat de Barcelona, Gran Via 585, 08007-Barcelona |
DBID | AAYXX CITATION DOA |
DOI | 10.3934/math.2020490 |
DatabaseName | CrossRef DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Mathematics |
EISSN | 2473-6988 |
EndPage | 7677 |
ExternalDocumentID | oai_doaj_org_article_49af45f1826447e1984ed606bca04c05 10_3934_math_2020490 |
GroupedDBID | AAYXX ADBBV ALMA_UNASSIGNED_HOLDINGS AMVHM BCNDV CITATION EBS FRJ GROUPED_DOAJ IAO ITC M~E OK1 RAN |
ID | FETCH-LOGICAL-c406t-c8af7698a88ef9eae33675d7c1dff39e38c7ce228e1e52fda7e94a694a4b49173 |
IEDL.DBID | DOA |
ISSN | 2473-6988 |
IngestDate | Wed Aug 27 01:29:30 EDT 2025 Thu Apr 24 23:03:12 EDT 2025 Tue Jul 01 03:56:46 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 6 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c406t-c8af7698a88ef9eae33675d7c1dff39e38c7ce228e1e52fda7e94a694a4b49173 |
OpenAccessLink | https://doaj.org/article/49af45f1826447e1984ed606bca04c05 |
PageCount | 17 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_49af45f1826447e1984ed606bca04c05 crossref_primary_10_3934_math_2020490 crossref_citationtrail_10_3934_math_2020490 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 20201101 |
PublicationDateYYYYMMDD | 2020-11-01 |
PublicationDate_xml | – month: 11 year: 2020 text: 20201101 day: 01 |
PublicationDecade | 2020 |
PublicationTitle | AIMS mathematics |
PublicationYear | 2020 |
Publisher | AIMS Press |
Publisher_xml | – name: AIMS Press |
References | 11 13 4 H. C. Tuckwell, R. J. Williams (9) G. Huang, Y. Takeuchi, W. Ma (8) 10 |
References_xml | – ident: 8 article-title: t al., Global stability for delay SIR and SEIR epidemic models with nonlinear incidence rate</i publication-title: B. Math. Biol. doi: 10.1007/s11538-009-9487-6 – ident: 4 article-title: D. J. Daley, J. Gani, Epidemic – ident: 9 article-title: i>Some properties of a simple stochastic epidemic model of SIR typ publication-title: Math. Biosci. doi: 10.1016/j.mbs.2006.09.018 – ident: 10 article-title: M. K. Oli, M. Venkataraman, P. A. Klein, et al., Population dynamics of infectious – ident: 13 article-title: J. T. Wu, K. Leung and G. M. Leung, Nowcasting and forecasting the potential domestic and international spread of the 2019-nCoV outbreak originating in Wuhan, – ident: 11 article-title: C. Mode, C. Sleeman, Stochastic processes in |
SSID | ssj0002124274 |
Score | 2.2259672 |
Snippet | To model the evolution of diseases with extended latency periods and the presence of asymptomatic patients like COVID-19, we define a simple discrete time... |
SourceID | doaj crossref |
SourceType | Open Website Enrichment Source Index Database |
StartPage | 7661 |
SubjectTerms | covid-19 reproduction number sir model |
Title | A stochastic epidemic model of COVID-19 disease |
URI | https://doaj.org/article/49af45f1826447e1984ed606bca04c05 |
Volume | 5 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
journalDatabaseRights | – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 2473-6988 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0002124274 issn: 2473-6988 databaseCode: DOA dateStart: 20160101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 2473-6988 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0002124274 issn: 2473-6988 databaseCode: M~E dateStart: 20160101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV09T8MwELVQJxgQn6J8yQNMyGoTXz48lkJVkAoLRd0i-3IWA2oRlP_POQ5VGRALQ5boZDnPke-dzn5PiAuEnDjROGVTZxXkfadKp2tFXOAmHhNMGv-UyUM-nsL9LJutWX2FM2FRHjgC1wNjPWQ-0GCAIgwBVDPrdmj7gFG9lNPYWjEV9mDekIHrrXjSXRsNPeZ_ofeQhk7Xjxy0JtXf5JTRjthuyaAcxEnsig2a74mtyUpJ9WNf9AaS6Rm-2KCnLCn6uaJsDGzkwsvh4_PdjUqMbDstB2I6un0ajlVrcqCQc-lSYWl9kZvSliV5Q5a0Zg5fF5jU3mtDusQCKU1LSihLfW0LMmBzfsAB11r6UHTmizkdCekYdWZrmfYuAZ9aY9Br8gB9Iod51hVX359dYasAHowoXiuuBAJIVQCpakHqistV9FtUvvgl7joguIoJetXNC17Fql3F6q9VPP6PQU7EZphTvCl4KjrL9086Y8qwdOfN3_EFfua9Bw |
linkProvider | Directory of Open Access Journals |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+stochastic+epidemic+model+of+COVID-19+disease&rft.jtitle=AIMS+mathematics&rft.au=Bardina%2C+Xavier&rft.au=Ferrante%2C+Marco&rft.au=Rovira%2C+Carles&rft.date=2020-11-01&rft.issn=2473-6988&rft.eissn=2473-6988&rft.volume=5&rft.issue=6&rft.spage=7661&rft.epage=7677&rft_id=info:doi/10.3934%2Fmath.2020490&rft.externalDBID=n%2Fa&rft.externalDocID=10_3934_math_2020490 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2473-6988&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2473-6988&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2473-6988&client=summon |